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Dr Christian P H Salas
Lecture 1. Sets and functions

1.1. Numbers
Whole numbers such as -3, -2, -1, 0, 1, 2, 3 are called integers. Ratios of integers such as -1/2,
2/5, -2/3, 5/4, and 7/3 are called fractions. Observe that any integer n can be thought of as a
fraction, since n=n/1. Since both integers and fractions can be expressed as ratios, they are
collectively called rational numbers. Some numbers cannot be expressed as ratios of integers eg. ©t
and \2. These are called irrational numbers,
Imagine a ruler of infinite length, whose midpeint is 0 :

& + >
Every ‘pomt’ on this ruler is either a rational or an irrational number. The rational and irrational

numbers thus form a ‘continuum’ which is called the set of all real numbers. The set of real
numbers is often denoted by R' or E', and because it can be displayed as a straight line (as above),
it is referred to as the real line.

You should already be familiar with the basic maths of real numbers (addition, subtraction,
multiplication, division, inequalities, powers, logarithms etc..} from QMI, and such knowledge is
assumed in what follows. Other types of numbers (eg. complex numbers) will not be discussed in
this course.

1.2, Sets

A set is just a collection of distinct objects (eg. numbers, cars, apples). These objects are called the
elements of the set. We can define a set by listing its elements eg. S = {1, 2, 3, 4}, or by describing
a property that its elements satisfy eg. T = {x| x’ < 1}. In words, ‘T is the set of all real numbers x
whose square is less than 1°. Membership in a set is indicated by the symbol <. Thus, for the two
sets S and T defined above, 28 and 1/2eT. The number 8 is not an element of S, and we write
this as 8¢S. If E' denotes the set of all real numbers, then “x is a real number’ can be written as
xeE"

1.2,1. Set inclusion

If all the elements in a set U are also in the set V, we write UcV, and say that U is a subset of V.
For example, if U = {2, 4, 6} and V = {x] x is an even number}, then UcV, If two sets W and X
have identical elements, then WX and XcW, and we write W=X. An important example of a
subset is that of an interval of the real line eg. the set {x| 3<x<9} is a subset of E', so we write {x|
3<x<9}cE"

The null set or empty set (denoted by &) contains no element at all, and is considered to be a
subset of any set that can be conceived. The universal set (denoted by Q) is the set of all objects
that are relevant in a particular context of discussion, and every set in that context is assumed to be
a subset of Q2 (see below).

1.2.2. Union, intersection and complementation

The union of two sets A and B, denoted by AuUB, is the set of all elements belonging to A, or to B,
or to both A and B. For example, if A= {3, 5, 7} and B= {2, 3, 4, 8}, then AUB={2,3, 4,5, 7,
8}. The intersection of A and B, denoted by AnB, 1s the set of all elements belonging to both A
and B. For example, using the definitions of A and B above, A~B = {3}.

Recall that the universal set £2 is the set of all objects that are relevant in a particular context of
discussion. The complement of a set A in O, denoted by A®, is the set of all elements in & which
are not in A. Continuing the above example, we might define C as the set of the first eight positive
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integers ie. Q= {1, 2, 3, 4, 5, 6, 7, 8}. Using the definitions of A and B above, we then have A® =
{1,2,4,6,8},B°={1,5,6,7},and 0’ =&,

More formally, the intersection of A and B is defined as A~B = {x[xe A and xeB}, the union of A
and B is defined as AUB = {x[x=A or xeB}, and the complement of a set A in Q2 is defined as A°
= {xeQ xgA}.

1.2.3. Cartesian product

The Cartesian product of two sets, say S and T, is the set of all ordered pairs (a, b) constructed by
taking the first element, a, from S and the second, b, from T, and is written SxT. Formally, SxT is
defined as SxT = {(a, b)lacS,beT}. For example, suppose S = {3, 4} and T = {5, 8}. Then SxT
={(3,5), (3, 8), (4.5, (4, 8)}.

Note that ordered pairs like (8, 4) are not in SxT as the first element in (8, 4) is taken from T. (Of
course, (8, 4) is in TxS).

1.2.4. Cartesian products and Euclidean spaces

We can use the concept of the Cartesian product of sets to “build up’ Euclidean spaces of any
dimension from the real line E'. Whereas ‘points’ in E' are real numbers, ‘points’ in two-
dimensional space, E*, are two-dimensional vectors or ordered pairs of real numbers of the form
(x5, x2). For example, the vector (2, 6) is a ‘point’ in 2-space. Similarly, ‘points’ in three-
dimensional space E? (the space we live in!) are three-dimensional vectors or ordered triples of real
numbers of the form (x;, x,, X3). For example, the vector (2, 8, 3) is a ‘point’ in 3-space. For any
n>3, ong can imagine (although not draw!) n-dimensional Euclidean space, E”, as consisting of all
vectors with n elements of the form (x;, %o, . . ., X,) where each x; is a real number. To see this, use
the formal definition of Cartesian product to write E* = E'xE' = {(xy, x)lx,€E', x,€E'}. In words,
‘E” is the set of all ordered pairs whose first element is a real number, and whose second element is
a real number’. Geometrically, constructing E* from E' involves adding another axis onto the real
line at right angles to it, to form a plane. For example, we could draw the set S = {(x;, x2)| %;<5,
x;2-2} as follows: He e

Analogously, E’ = E'xE'xE' = {(x, %3, x3)] x:€E', x;€E', x;¢E'}, and more generally, E* =
E'XE'xE'x. - -xE' = {(x1, %3, ..., Xo)| x1€E", ::€E, x;€E!, ..., x,€E'}. In the rest of the course, we
shall use the phrases ‘point in E* and ‘n-dimensional vector” interchangeably.

1.2.5. Index notation

Consider the eight mathematical quantities xi, Xz, X3, X4, Xs, Xs, X7, X3. Thought of together, they
comprise a set 8 = {x,, X, X3, X4, X5, Xg, X7, X5}. The subscripts are called indices, and are simply a
convenient label. We can call a typical member of the set x;, and we can thus write S = {x;},1=1,
2, ..., 8. Double indexation can also be used. For example, suppose S = {ay;, 2y, a, az;, 823, an}.
We can call a typical member of the set ag, and thus write S = {a;},1=1,2;j=1,2, 3.
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1.3. Functions
A function is a rule which associates with each pomt x in its domain, DcE", a single point f(x) in
its range, RCE™ We write this f: D—R, and illustrate it by the bubble diagram:

O - [ 3
We say that f(x) is the image of x under f. When n =m = 1, we can draw a two-dimensional graph
of the function eg. {(ﬂ)

L ’ %

| ®

{(Note: a bubble diagram and a graph are two different ways of visualising a given function. Often,
the bubble diagram is more useful, as the graph may be difficult (or impossible) to draw for higher
dimensions). Consider, for example, the function f(x) = 2x* - 1, with domain D = {x| 0< x <1} and
range R = E'. One way of picturing this function is the following. First, draw up a table of values,

listing in the first row several values of x m the domain D = {x] 0< x <1}, and in the second row
the corresponding images in the range R = E":

X 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1038 0% 1.0

f(x) -1 -098 |-092 |-082 |-068 |-05 |-028 [-002 |0.28 |062

Each column in the table is essentially a vector or an ordered pair of the form (x, f{(x)), which can
be plotted as a point in the plane E*: 9 ‘F

1

=P %

-9
It is often convenient to think of f(x) simply as the y-coordinate corresponding to a typical pomt x,
in which case the graph of f: D—>R can be expressed as {(x, y)| x€D, v = f(x)}. So we can label
the graph simply 'y = f{x)’. We can talk interchangeably about ‘the graph of f°, “the graph of f(x)’,
and ‘the graph y = f(x)’. (Note: it is not possible to plot all the points of the graph for a function
like f, which has infinitely many values of x in its domain. Fortunately, plotting a few points
usually provides a good idea of what the function looks like. For any so-called ‘well-behaved’
function, these points can be joined up with a smooth curve - and extended if necessary - in order
to complete the picture}.
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1.3.1. Examples

() f(x) =a+bx (linear) V % cd ¥ B'& (b) °)

(i) fix) = a + bx + ¢x’ (quadratac) /i ( & )
€C<O
a
(iii) f(x) = a + bx + cx* + dx° %
(d>»0)

(iv) f(x) = 1/x (hyﬁerbo[ic)

-

\I

(Note: D cannot include 0 since 1/0 is not defined, and R cannot include 0 since 1/x is never equal
to zero),

(v) f{x) = log,x, a>1 (loganth:mc base a)

1<

(Note: D = {x| x>0} since the logarithm of x is only defined for positive x).

4"

1.3.2. Functions and correspondences

The crucial point about the definition of a function is that it associates exactly one point in the
range with each point in the domain. However, it is possible to imagine rules which associate
points in the domain with more than one point in the range, as shown in the diagram below:

T

Such a rule is not a function; it is called a correspondence, For example, the rule g(x) = {-vx, Vx}
which associates with each x > 0 both its positive and negative square root is a correspondence.
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1.3.3. One-to-cne and many-to-one functions

One can also distinguish between two types of function; those that map each and every pomt in the
domain onto a different point in the range, and those that map two or more points in the domain
onto the same point in the range. The former type of function is called one-to-one, and the latter

many-to-one. The two possibilities are illustrated below:
OM = b ® '“ ® { r L % - ® e
o\ ~» 2 /R
bh “ - Eﬂ—»

Important; whether a function is many-to-one or one-to-one depends on its domain of definition.
For example, f(x) = x” is many-to-one on E', but one-to-one if D = {x| x>0}.

x® u®
(d=€') (0=§x|>0})
- P

ﬁg!- h-M‘ gﬂlﬁﬁo-ﬂﬂ.

1.3.4. The inverse of a function
We now come to the important concept of the inverse of a function. A function f : D—R has an
associated inverse function f ' : R—D if and only if it satisfies the following two conditions: (i) f is
one-to-one on D (i1) each and every point in R is linked to a point in D by the function f (i¢. there
are no ‘spare points’ in R). If these conditions are satisfied, fis said to be invertible,

8 £ 0 —&/R
jvertible gne-to-cne but not iavertible

The inverse function f " : R—D is a rule which assoociates with each and every point y in the
range R the point x in the domain D which the function f maps onto y. Given an invertible function
y = f(x), its inverse can be found simply by solving for x in terms of y to get x = f "'(y). For
example, consider the linear function y = f{x) = a + bx. Solving for x in terms of y gives x = £ (y)
= (y-a)/b.

1.3.5. Functions of several variables and vector-valued functions
So far, we have mainly considered functions from the real line to the real line (ie. where D<E' and
RcE"). The main reason for this is that such functions are easy to visualise and work with, by
drawing graphs. The idea of the graph of a function generalises to higher dimensions, however. For
example, suppose that fis a function of two variables (ie. from E* to E') defined by

fxy, X2) = %, + %,
The graph of this function is the set of points traced out in 3-dimensional space {(or ‘3-space’) as x;
and x;, vary ie. the graph is a surface in 3-space;
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flw, 2,) 4
t 1)

*a
This ‘surface’ is in fact the set of points in E* which can be defined formally as

{(x1, X2, X.3)EE3| X=X+ X3}
This formal definition of a graph in 3-space generalises to higher dimensions. The graph of a
function f: DeE"—»ReE™ is a set in E*™ of the form

{(x, y)eE"™y = f(x) and xeD}
Therefore, if f goes from E' to E’, its graph lies in 9-dimensional space, E°! It is, of course,
impossible to visualise graphs beyond 3-dimensional space.

Finally, some terminology. Consider the function f : DeE"—ReE"™ If m=1 and n>1, then fis a
real-valued function of one or more variables eg. n=3, m=1 f(x, X,, X3) = ;X + 4x5". If n=1 and
m>1, then f is a vector-valued function of one variable (ie. points in the range are m-vectors) eg.
n=1, m=3 f{x) = (2x, 3x + 4, 7x°). f m>1 and n>1, then fis a vector-valued function of many
variables eg. n=2, m=2 f(x, X3) = (4x1+ X, X1X2).

1.4. Terminology of logic

The following terminology of logic appears frequently in economics. Suppose we have six
statements S; (i=1, 2, ..., 6):

S1: The sun is shining

Sy It is daytime

Ss: William Hague is boring

Sa: All politicians are boring

Ss: There are less than 30 days in this month

S¢: It is the month of February

1.4.1. ‘IF’ relationships
Consider statements S; and S;. Obviously, S; must be true if 8, is true, but S, can also be ttue
when §; is not true (eg. when it is cloudy). This logical relationship can be expressed as
if 8, then 857

or ‘S;implies S,

or Sz == S]

or ‘S, ifSy

or ‘asufficient condition for S, is Sy

1.4.2. ‘ONLY IF’ relationships

Consider statements S; and S4. Obviously, Sy cannoct be true if S; is not true, because William
Hague is a politician. But Sy 1s not guaranteed even if S; 7s true, because Tony Blair might be
really interesting. We can express this as

‘if Sy, then S7°
or ‘S;imphes Sy’
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or S4 = S3
or ‘S;onlyif Sy
or ‘anecessary condition for S;is S5’

1.4.3. ‘IF AND ONLY IF’ relationships
Consider statements S; and Ss. Clearly, if Ss is true then S; must also be true. Conversely, if Se is
true, it must be the case that Ss is also true. We can express this as
‘Ss is equivalent to S¢’

or ‘Ssimplies and is implied by S¢’

or Ss e 5

or ‘Ssifand only if S¢’

or ‘anecessary and sufficient condition for S¢ is Ss

1.5. What you must do before the next lecture (Thursday, 16th October 1997, ‘Vectors’)

Read Chiang, Fundamental Methods of Mathematical Economics, Chapter Two {pages 7-32)
carefully, and make sure you are familiar with all the terms and concepts in that Chapter, and m
these lecture notes. To check your understanding, try some of the problems in Chapter Two (I
leave this to your discretion; the answers to many of the problems are given in an appendix at the
back of the book). If you find yourself struggling with any particular areas, ask a friend to help you
or come and see me in my office immediately. From next week onwards, this material will be
assumed known, and will certainly crop up again in lectures, assignments and class exams. There
will be a short written test at the start of class next week (Monday 13th October or Tuesday
14th October, depending on which class group you are in) and you will be required to hand in
your answers for assessment. In the remainder of the class next week, we will cover some more
essential material prior to the main lecture on Thursday (further handouts will be distributed, so
make sure you attend!). Here are some worked examples of questions you might be asked in the
test:

Example 1 If the sets A and B are as specified below, find AUB and ANB. In each case, AcE®
and BF”.
(a). A ={(x, xz)|x; 21} B={(x1, x5} x; <1}
(B). A ={tx; xz3)\x; =1} B={x;. x3)| x221}
(). A = {{x). %)\x2 2x,°} B = {(x1, x2)| x> = O}

Solution: (a). AUB = E? ie. all 2-dimensional vectors of the form (x;, x2); AmB = {(x1, X2)| x; = 1}.
) AUB={(x, x| xi2lorx;21}; AmB = {(x;, x)| Xy = 1 and x; = 1},
(©). AUB = {(x1, X)| X2 2 x;° or x, = 0}; AnB = {(0, 0)}.

Example 2

(a). Suppose that f is the following real-valued function of one variable (ie. from E' to E') : fx)
=2¢" - 5¢° + 8¢ - 20. Find f{5).

(b). Suppose that fis the following real-valued finction of three variables (ie. from E° to E'):
fixer, %o x3) =%, + 4x5”. Find {1, 2, 3).

(c). Suppose that f'is the following two-dimensional vector-valued function of two variables (ie.
from E7 to E°): fxy, x5) = (4x; + %>, X;x2). Find f12, 3)

Solution: (a). f{5) = 145 (b). f(1, 2, 3) =38 (¢). f(2, 3) = (11, 6) (End of lecture 1)



