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Lecture 4. Matrix inversion and Cramer’s rule Copyright © 2022

4.1. Determinants of (2x2) and (3x3) matrices

From Lecture 1. you are familiar with functions which associate a scalar f(x) with a real value
of the variable x. They are called scalar-valued functions of one (real) variable. In this section,
we shall study the determinant function, which is a specific example of a scalar-valued function
of a matrix variable ic. a function associating a scalar f{X) with a matrix X.

Dr Christian P H Salas

The determinant of an (nxn) matrix A is a unique scalar associated with A by a well-defined
calculation rule. Determinants are only defined for square matrices.

Let us first consider the determinant of a (2x2) matrix A, where
a a,,
A s [P 2
dy Ay
We represent the determinant of A as

4y 8y

a'_’l aJE

detA =

where the straight lines without the usual corners indicate that it is a determinant. For the (2x2)
matrix above, we have

detA = a;;a2- - 208y
In schematic form, the process is illustrated with arrows as

@ o
A= a1
A% s |
‘ , '3 2], 3 2
Example: The determinant of the matrix A = 5 s is detA = 6 5' =3(3)-2(6)=3.

Now consider the determinant of a (3x3) matrix
a']l ai;‘ a]i

A=la, a, ay

a,

st 85 A
The determinant for this matrix is computed as
detA = [a1a0a53 + 212823831 + 213830821] - [A1322083; + a1paz1a3; + ana3a0)

The derivation of this expression can again be represented schematically by arrows:

Note: The procedures described above are only suitable for square matrices of order 2 or 3.
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4.2. An alternative method for evaluating higher-order determinants: the Laplace
expansion
4, a4, 3,

i3

GivenA=|a, a, a|.

a; Ay Ay
then the determinant of A is also given by
8y 8y a4y ay dy ap
|Al=an -ap +an
a2 a%:‘\ a?] a!i a‘31 a'i:

To understand where this expression comes from. it is necessary to define minors and
cofactors.

The subdeterminant formed after deletion of a row and a column as above is called a minor.
The minor of element a; (at the intersection of row i and column j) is denoted by |M;)| , and
is the determinant of the submatrix formed on deletion of the ith row and jth column of the
Sull matrix. It follows from this definition that a matrix has as many minors as it has
elements. For a (3x3) matrix, we therefore have the following nine minors;

I a:‘-,? a’ZS al] a}}
\MHL: =axpas; - axasn, [Mp|= =azazz - dx3a3) -
di  dgg 51 ds
4y Aap
Mi3f= =dazidzz - xa3 .
a3 as,
a;  dg ayp Ay
Mz = =ajxas; - a3dn , M= =aydaz - a;d;) »
Ay Ay Ay Ay
a;, ap
|Mza|= =aqidaz = 12831 .
ay Ay
IR COTI-SE I @ 8|
(M= =ajan - 413d:: . M= =dapds - a;a .
4y 8y dy dy
ay;  ap
JM33|= =ana - apan .
8y @y

Thus. the determinant of A above can be written as
|A] = a|[My| - a;a[M s +a;3M,4

The cofactor of an element a; , denoted by |Cy| , is the minor of that element prefixed by its
correct sign. The sign is given by -
(N

where i and j refer respectively to the row and column that have been deleted. The number

(-1)" is positive if i+f is even, and negative if i+f is odd. So |Cy| =(-1)"7|M,|. Hence. |A| can
be written as

|A] =ay [Ci| + a1dlCigf + ai5lCo5
where

ICu| = (-1 Mu|= M|, [Cidf = -1 Miz| = -Mis| ., |Crs] = (-1)*[My3] = M3

The determinant of any square matrix can be found by using this Laplace expansion, which for
an (nxn) matrix is
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A= Z a,;|C,,|. for expansion by the kth row.

=1

Note: Since any row or column can be chosen for the Laplace expansion. always choose the
row/column with the most zeros or oncs!

Summary of Laplace expansion procedure

1). Choose any row or column in the matrix (say column 1).

2). Form the product of the first element in that row or column (here a;;) with the minor
obtained by deleting that row and column from the matrix (here |M ).

3). If the sum of the row and column index is even, multiply the product by +1. If odd,
multiply by -1 (for a;; |M,)| , the sum of the row and column index is 1+1=2 which is
obviously even, so the sign of ai; | M| stays unchanged).

). Repeat steps (2) and (3) for the second element in the row or column along which you
are expanding, and add to the first product, and so on, until You come to the end of the row
or column (in this example, we would end up with a;; | My)| - az | Msy| + as, | M| - - -+
('I)nﬂam lerl)-

The important thing to notice is that, regardless of which row or column we choose to expand
along, we get the same answer. So choose a row or column with lots of zeros.

Example 1

I "3 3
A=(3 2 0

2 3 1]
Expanding along the second row we get

[A] = ay|Cqy| + an|Caf + axs|Cas) = =1 (M| + 850/ Mag| - a3|Ma;

:-32 ? +211 ; -OI 2‘——3(2—9)+.13(I-6)-0=-3(-7)+2(-§-)=21—]0—1]
31 21 23
Example 2
0 1 0
A=|1 -2 -13
-1 2 17

Expanding along the first row we get
Al = a11|Chi| + 212 Craf + 2135/C )
= ap|My| - ;M2 + apsM;5|

1 —I3
=1. I7

< +0

-2 -13
—ol =-1(17-13) = -4

1—2’
T2 17

-1 2

Note: All of the above applies to expansion along any row or column.
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4.3. Some properties of determinants

(1). Taking the transpose of a matrix does not affect the value of the determinant ie. |A| = JAY,

4 3 4 5
For example, = =
6 3 6

(2). The interchange of any two rows (or two columns) will alter the sign. but not the numerical
| 2| g
1 5 B

value, of the determinant. For example, ‘5 = 9: mterchanging the two rows. A =9

3

(3). The multiplication of any one row (or one column) by a scalar k will change the value of
the determinant k-fold.

(4). The addition (subtraction) of a multiple of any row to (from) another row leaves the value
of the determinant unaltered.

(3). If a row (or column) in a matrix contains only zeros, then [A]=0.

(6). If one row (or column) is a linear combination of other rows (or columns), then |A|=0.

These properties can be useful in simplifying the evaluation of determinants. In particular,
property (6) is used in the establishment of singularity (sec below). As an example of (6),

consider the matrix A = [8 2]. The second row of this matrix is just twice the first row. It

follows from (6) that the determinant must be zero. and this is indeed the case : |A] = 4(2) - 1(8)
=0,

4.4. The rank of a matrix

The rank of a matrix A, denoted by rank(A). is the order of the largest non-zero determinant
that can be obtained from the elements of A. This definition applics to both square and
rectangular matrices. Thus, a non-null matrix A has rank r if at least one minor of order r is
different from zero, while all larger minors (ie. minors of order r+1 or larger) are equal to zero.

The rank of a matrix A can be found by starting with the largest determinants of order m, say,
and evaluating them to see if one of them is non-zero. If so. rank(A) = m. If all the
determinants of order m are equal to zero. we start evaluating determinants of order m-1.
Continuing in this fashion, we eventually find the rank r of the matrix. being the order of the
largest non-zero determinant.

2
1

rank(A) = 1, since the order of the largest non-zero minor of A is | (There are. in this simple
example, four non-zero minors of order 1).

6
Example: Find rank(A), where A = L :{ First, we find that |A| = 6(1) - 3(2) = 0. Thus.

Notice that if A is (nxm) and n#m, then rank(A) < min(n, m).

A very important result is the following: If 4 is (nxn) and rank(4) = n, then A" must exist.
This is because it can be shown that the rank of a squarc matrix is equal to the number of
linearly independent rows in the matrix (which 1s also equal to the number of linearly
independent columns). If A is (nxn) aud rank(A) = n, then all the rows (and columns) of A
must be linearly independent, which is a sufficient condition for A™ to exist. A square matrix A
of dimension (nxn) will not be invertible (ic. it will be singular) if its rows (and therefore
columns) are linearly dependent. In that case, we would find that rank(A) <n,

Note that we now have a set of equivalent criteria for the existence of A A7 exists iff 4| =0
< rank(A)=n < the rows (and columns) of A are linearly independent.
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4.5. A note on homogeneous equation systems
In the last lecture, we said that a general system of m linear equations of the form

s taks oo Fax. = b
anx; tanmxy +---+anx, =bs

AniXy T amXo T T amX, = bm

can be arranged as Ax = b, where

ay 4, v 24y Xy bl
ay  dy aqp X3 b,
A= ) X= b=
a‘ml a’ml amn Xn bm
If b is a null vector, so that Ax = 0 . then the m linear equations are said to form a

(m~1)

homogeneous equation svstem. Written out in full, a homogencous svstem looks as follows:

anX; tapx; toctaX, =0
anx; tamXs titanx, =0

AN T amXe t o AueXn = 0

(1), Suppose that A is a square and non-singular (mxm) matrix. Then the homogeneous
equation system yields only the “trivial” solutionx=A" 0 = 0

{m=1) {m=1)
(2). Suppose now that A is singular. This means that the equations in the homogeneous system
are linearly dependent. It can be shown that in this case, the equation system has an infinite
number of non-trivial solutions (in addition to the trivial one).

As an application of these results. consider again problem 6 (e) in the assignment for lecture 2.
I asked vou to determine whether or not the following set of vectors in 4-space is linearly
dependent: {(2.3.4.5). (1,2, 1.3), (0. 1. -2. 2). (3. 5. 5, 8)}. As vou should know by now. the
definition of lincar dependence involves the vector equation
M(2,3,4,5) + A1, 2.1, 3) + A3(0. 1, -2, 2) + 14(3. 5. 5. 8) = (0. 0. 0, 0)
This implies the following 4-equation system (I have written it out in matrix formy):
21 0 314, 0

32 1 5[4, 0
4 1 -2 51, 0

5 3 2 B4, 0

Now. this is clearly a homogeneous system, If the coefficient matrix were non-singular. the
only possible solution to the system would be the trivial one (ie. & = A, = Ay = A, = 0), in
which case the set of vectors would be linearly independent. However. it can be shown that the
determinant of the coefficient matrix is equal to zero, so that an inverse does not exist. You can
casily see that the fourth column of the coefficient matrix is just the sum of the first two
columns. By (6) in section 4.3, this must mean that the determinant of the matrix is zero, and
therefore that the coefficient matrix is singular. By (2) above. it follows that the system has an
infinite number of non-trivial solutions, so the set of vectors is linearly dependent.
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4.6. Evaluation of the inverse A

So far, we have discussed the inverse A" of a matrix without indicating how we calculate it.
We now know that, if the matrix A in the linear equation system Ax = b is non-singular, then
A exists. and the (unique) solution of the system will be x = A”'b. We can test for the non-
singularity of A by the criterion [A| # 0. In order to move on to calculating A, we must begin
by defining some new matrices.

The cofactor matrix

A cofactor matrix C is obtained by replacing each element a; of a square matrix A by its
corresponding cofactor [C;|, where [Cyi| 15 calculated as discussed ecarlier (see Laplace
expansion). Recall that |C;| = (-1)j—j|MU|, where [Mj] is the minor corresponding to the removal
of the ith row and jth column.

3 2
Example 1: Find the cofactor matrix for B = L J .

-1
We have the following : |Cyi| = -1, |C\5 = -4, |Cy| = -2. [C1a| = 3. Therefore the cofactor matrix
_ _[ICHJ ICDJ[_I —4J
isC= = :
G, |C:: -2 3
1 2 3
Example 2: Find the cofactor matrix for A= |2 3 2/
3 3 o
We have the following:
rC“|=3 2=12-6:6.|Clgj= -!2 2‘=-{8-6):~2.ICHI=12 =6-9=-13
3 4 3 4 T3
ch,;|=~2 3'=-(8-9)=I.[C~«§=F 3=4-9=-5,|C«;1=~}1 =-(3-6)=3,
) 3 4 T3 4 s 3 '
2 3 . 1 3 [1 .
|C.311=3 2=4'9:'3-[C321_-#2 QJ='(2'6):4s|C33|:“2 3:3'4:'1

Therefore the cofactor matrix is

|C“| €| |Css 6 =& -3
C= |C21 C,, JCJ; = 1 =5 3
[C.ﬁlr JCSZJ C33 *5 4 —]
The adjoint matrix

If we have a square matrix A and its cofactor matrix C. then we define the adjoint matrix of A
(written as adjA) as the transpose of the cofactor matrix. so that adjA = C'. Thus, for a (3x3)
matrix, if

Cal [Ca [Cyf [Cal [Cal [Cs]
= JCEI [sz #Czs .then adjA=C'= |C;:| chz ‘C_a:
Cs, |C33 |C33 hlcu Cy; 1C33
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Consider example 2 above. We found that

el Ic, Cul] [6 =2 -3
Cal Bsl [Csll=11 =8 3
|C31| fIC.szf IC(J % 4 o
The adjoint of A is simply the transpose of this matrix:

=

6 1 =5
adA=C=|-2 5 4
-3 3 -1

Relationship between the adjoint matrix and finding the inverse 4
It can easily be demonstrated (see eg. Chiang, Chapter 3, pages 105-107) that
A.adjA
Al
where [ is the identity matrix. Pre-multiply both sides of this equation by A, and recall that
A'A =1. This vields the formula for calculating the inverse of a matrix:

adjA = A
Al
N oo L _
Example 3: Find the inverse of the matrix A = LZ il First, check the determinant: |A| = 4-2
= 2. Since |A| # 0, the inverse A exists. Next we find the cofactor matrix. We have |C)y| = 1,
I -2
ICial = <2, |Ca| = -1. |Cs2| = 4. Therefore the cofactor matrix is C = [ i :' Next, we find

1 -1 1 -1
the adjoint of A. This is just adjA = C' = . Then A" = 2 =
2 4 2|2 4
/2 -1/2
-1 2 |

To check the inverse above, now find AA™" =1 -

4 1112 -12] [412)+1(-1) 4D +12)] 1 0
[z 1] -1 2 | [20/2)+1(-1) 2(—1/2)+1(2)J_ 0 1

2 3 1
Example 4: Find the inverse of the matrix A = [ 1 2 BJ . First, calculate the determinant:
31 2

IAl = [)@)2)H+B)B)E)HID(IXD)] - [(D@)EHE2)+2)(1)(3)] = 36 - 18 = 18. Since
|A[#0, the inverse A" exists. Now. we find the cofactor matrix. Verify for vourself that this is

1 7 -5 . =8 %
C=|-5 1 7.1t follows that adA=| 7 1 -5]|. Therefore

7 =5 1 —%
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giA 1/18 -5/18 7/18

a

e 1j\l =|7/18 1/18 —5/18|. You can verify for yourself that AA™ =1
-5/18 7/18 1/18

4.7. Cramer’s rule

We are now going to state Cramer’s rule. which gives a solution value of a single endogenous
variable x, at a time. For a more complete derivation, see Chiang, Chapter 5, pages 107-112.
Cramer’s rule can be very useful if one only needs to find one variable’s value.

Suppose we have a linear equation system Ax = b. We have found that
x=Ab= %
|A]

provided that A is non-singular. If we only wanted to find one element of the vector x, say X; , it
would be a waste of effort to go through the whole process of inverting A and then multiplying
b by the inverse. Instead we could obtain x; simply by replacing the ith column of the matrix A
by the constant vector b (to get a matrix denoted by B;). and then using the following simple
formula:

This is Cramer’s rule for the solution of an equation system Ax = b one variable at a time.
Note that Cramer’s rule is based on the concept of the inverse matrix, although in practice it
avoids the process of matrix inversion.

Example: Find x,; and x, using Cramer’s rule. where

6 -3[x,] [50

2 6 |x 35
First. calculate the determinant of the coefficient matrix: |A| = 36-6 = 30. Then using Cramer’s
rule, we have

50 -3
B, P5 6 . -
x,:‘A—I: - BEOHIDS) 130 =85 /50 = 185
6 &
B,| |2 35 . %
=R = (210+100)/30 = 310/30 = 103

4.8, What you must do before the exam next week (Thursday 6th November)

Read Chiang, Fundamenial Methods of Mathematical Economics, Chapter 5. Sections 3.1,
5.2.53, 5.4, and 5.5. Learn how to invert a (3x3) matrix by finding its determinant, then the
cofactor matrix, then the adjoint matrix, and then dividing each element of the adjoint matrix
by the determinant. Please do lots of practice, because you will definitelv be asked to invert a
(3%3) matrix in the exam. There will not be a test in the class next week. Instead, I will give
vou a final briefing for the exam, and deal with any outstanding problems.

Please malke sure you can solve the problems on the attached assignment sheet for Lecture 4 by
the start of next week. You will be asked to solve very similar problems in the exam.

(End of Lecture 4)



