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Lecture 6. Total differentiation Dr Christian P H Salas

6.1. Introduction: from partial differentiation to tota!/ differentiation

Consider a function from E" to E'. say v = f(x5. X5, ... X;). The technique of partial differentiation
assumes that all the variables xi, ..., x, are independent of each other. in the sense that a change in
any one of the variables has no effect on the others. Thus. we have been able to find év/éx,, for
example, by assuming that x; can vary without affecting the values of x.. ..., x,,. The variables x.,
..., Xn are simply treated as constants when partially differentiating with respect to x;.

We saw how to use partial differentiation to analyse the comparative statics of a simple market
model in the last lecture. It was possible to use partial differentiation in this case because we had
explicit reduced form solutions for the model ic. we could express P* and Q* explicitly as
functions of the parameters a, b, c¢. and d: P*(a, b. ¢, d) = (a-c)/(b+d) and Q*(a, b, c. d) =
(ad+be)/(b+d). Since a change in any one of the parameters a, b, ¢. d has no effect on any of the
remaining parameters, we were able to find the eight comparative static partial derivatives of the
model by partially differentiating P* and Q* with respect to each parameter in turn: &P*/fa,
OP*/ab, OP*/éc, dP*/ad, 0Q*/da, &Q*/db, dQ*/dc and £Q*/ad.

Unfortunately. it is difficult in practice to set up an acceptably ‘realistic’ model which vields
explicit reduced form solutions, because very strong assumptions about functional forms and
parameter values have to be made. In the case of the simple market model above, for example. we
had to assume that demand and supply are simple linear functions of price. When setting up a
mathematical model to investigate some economic phenomenon, your aim should always be to
keep things as general as possible by imposing as few restrictions as possible on the model. In
this way, any interesting results you come up with will be applicable in a wide range of
circumstances, not just when all functional forms are linear (for example).

In this lecture, we consider what to do when we have no explicit reduced form solution to our
model, perhaps because we have not wanted to restrict ourselves to any specific functional forms.
In this situation, we do not have neat expressions i terms of exogenous variables and parameters
which are all independent of each other, so partial differentiation is inappropriate. We have to use
total differentiation to investigate the comparative statics of the model.

6.2. A simple general-function national income model with two endogenous variables
To fix ideas. consider a simple national income model of the tvpe discussed in Supplementary
Lecture 1. The endogenous variables are
Y = national income or output (in £ per period)
C = aggregate houschold consumption (in £ per period)
and the exogenous variables are
I = investment expenditure by firms (in £ per period)
G = government spending (in £ per period)
T = taxes (in £ per period)
To begin with, let us specify an explicit equation system linking these variables together. The first
equation is the equilibrium condition (discussed in Supplementary Lecture 1):
Y = C + Ir] “ G:}
The second equation is the Keynesian consumption function
C=a+b(Y-Ty) (a>0. 0<b<l)
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where Y-Tj is the level of disposable income. Following the same general procedure as discussed
in Supplementary Lecture 1, we can solve for equilibrium income in terms of exogenous variables
and parameters by substituting the (explicit) equation for C into the equilibrium condition:
Y =a-+ b(Y-T|)) o lu + Gc]
Solving this expression for Y gives the reduced form solution for equilibrium income:
Y*a. b, In. G, To) =(a + I, + Gy - bT)/(1-b)
We now substitute this expression for Y* into the consumption function, and simplifv the resulting
expression to get equilibrium consumption in terms of exogenous variables and parameters:
C*(a, b, To. Go. To) = [a + b(l, + Gs - To))/(1-b)
Since we have explicit reduced form solutions for Y* and C*, we can investigate the comparative
statics of the model by partially differentiating Y* and C* with respect to cach of the variables a, b,
Io, G, Ty in tum. For example, partially differentiating C* with respect to T;, vields
acr _ b 0
GT[J (1 it b)
This comparative static result tells us that equilibrium consumption is negatively correlated with
the level of taxation.

Now suppose that we do not want to restrict ourselves to a /inear consumption function. Instead.
we shall let consumption be some general function of Y and T, written as follows:
C= C(Y‘ Tu)
(We can assume that this function is differentiable evervwhere ie. smooth and continuous). In this
case, we cannot solve for equilibrium income in the wav we did above (ie. by substituting the
equation for C into the equilibrium condition and then solving for Y*) because we do net have an
explicit functional form for C. The most we can do 1s substitute the general function C = C(Y, Tp)
into the equilibrium condition to get the following expression:
Y=CX,.To)+L+Gy

Assuming that an equilibrium point (Y*, C¥*) exists, and provided that certain other conditions are
satisfied (to be discussed in a later lecture), we can assume that Y* and C* are given by reduced
forms

Y* =Y*(Iy, Go, To)

C* = C¥1,, G, To)
as before, but now we do not have explicit forms for these functions. Thus, we cannot obtain an
explicit expression for the comparative static partial derivative 8C*/@T,. say. from a reduced form
solution for C* in this general-function case.

We know that at equilibrium, the following identities hold:

Y* = C(Y*, TQ) + I.) + G{J

C*=C(Y*, To)
Note that these expressions are identities (they are called equilibrium identities) because they
must always hold at any equilibrium point (Y*, C¥), irrespective of what the actual values of
Y* and C* are. Supposc we trv to find the comparative static partial derivative 6C*/@T, from the
equilibrium identity for C*. The rate of change of the function C(Y*. T;) with respect to Ty i3 not
given by a partial derivative 6C(Y*, To)/&T, ., because a change in T, will affect C(Y*, To) both
directly, and also indirectly through Y*. In other words. the arguments of the function C(Y*, To)
are not independent of each other, because a change in T, will affect Y*, so we cannot simply
partially differentiate C(Y*. Tp) with respect to Ty To find the rate of change of C(Y*. Ty) with
respect to Ty when Y* and T, are related, we must resort to total differentiation. Total
differentiation is based on the concept of the total differential of a function. to which we now turn.
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6.3. Total differentials

So far. we have used the symbol dy/dx to denote the derivative of a function v = f{x) with respect
to x. From now on, we shall think of dv/dx as a ratio of two quantities, dv and dx, called the
differentials of v and x respectively.

Suppose that we are given a continuous and ‘smooth” function v = f(x). We define the differential
of the independent variable x, denoted by dx, as an ‘infinitesimally’ small change in x. (Note:
an ‘infinitesimally” small change in a variable is a change that is treated for mathematical purposes
as approaching zero in the limit). Since x is rclated to v through the function v = f(x). an
infinitesimally small change in x will ‘cause™ a corresponding infinitesimally small change in v
denoted by dy. We define this to be the differential of the dependent variable v. In other words, we
define the differential of the dependent variable y, denoted by dy, as the ‘infinitesimally’ small
change in y caused by the differential dx. Now, we know that dv/dx = f(x). If we interpret dv/dx
as the ratio of dv and dx. we can rearrange this identity to get
dy = f'(x)dx

This tells us that the ordinary derivative f(x) of the function vy = f{x) can be used to ‘convert’ a
differential dx into the corresponding differential dv.

Example: Given the function y = f{x) = 3x” + 7x - 5 and a differential dx. find the differential dy.
Solution: The first step is to find f'(x). Using elementary rules of differentiation for a function of a
single variable, we have fi(x) = 6x + 7. Thus, the desired differential is dy = (6x + 7)dx. Chiang
(Chapter 8, page 189) shows how this result can be used to approximate dy given a small increase
in x from 5 to 5.01. Note that the identity dy = f{x)dx holds only for ‘infinitesimal’ changes in
x. For changes in x which are not infinitesimal, the actual change produced in v will differ from the
value of dy calculated using dy = fi(x)dx by an amount which increases with the size of the change
in X,

We now want to do something similar to this for a function of two variables. sav v = f{x;, x2). This
equation represents a surface in 3-space. and the partial derivatives év/0x; and &y/@x, evaluated at
a particular point are the slopes of the two lines which are tangential to the surface in the x; and x»
directions at that point (seec Chiang. Chapter 7, pages 176-177). In this case. we define the
differentials of the independent variables. denoted by dx; and dxs, as infinitesimally small changes
in x; and x». We define the differential of the dependent variable v, denoted by dy. by the following
equation:

&
G G
ay=Zdx, + L,
OX] CX:

The differential dy is called the total differential of y. As in the one-variable case, the above
equation holds only for infinitesimal changes i x; and x.. although it will provide a good
approximation to the “true” change in y when small changes in %, and x, are considered.

Example: Given the function v = f{(x,. x2) = (2xx2)/(x; + x-) and the differentials dx; and dx.. find
the total differential dy.
Solution: The first step is to find the two partial derivatives éy/dx, and &y/éx,. Using the quotient
rule, &v/Ax; = [(x; + %2)2%z - 2%%)%; + X)) = (2GOx, + xa), and Sv/dxs = [(x; + x2)2%; -
2x%:]/(x; + X2 = (2x9)/(x; + x2)°. Thus, the required total differential is

dy = (2x:})/(x1 + ) dx + (207W(x + %) dx,
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Note that the process of finding the total differential dy of a function is called total

differentiation,

Everything we have said about functions of two variables works just as well for functions of any
number of variables. Thus, if v = f(x;, X, ..., X»). then by definition the total differential dv is

cy ¢ C
dy = —ﬁydxl e ﬂ—ydx, i e ldxn
ox, ox, ox,
and this equation provides a good approximation to the “true’ change in v when small changes in

X1, X1, ..., X, are considered.

6.4. Total derivatives

Now suppose that we are given a function from E’ to E', vy = f(xs, x»). in which x; and x are
themselves functions of another variable, say time t. In this case, v is really a function of only one
underlying variable (time), ie. v = y(t), so the way in which v varies with t is described by the
ordinary derivative dy/dt for a function of one variable. If we were given full specifications of the
functions x; = x;(t) and x; = x(t), we could substitute these into the function v = f{x;, X) to get an
expression for v involving only the variable t, and we could then use the rules of differentiation for
a function of a single variable to find the derivative dv/dt. However, there is an alternative
approach which would almost certainly be easier, and which is conceptually useful with regard to
the comparative static analvsis of general-function models.

We saw carlier that if v = f{xy, x2), then

dyzﬂﬂdx1 + gy (1)
OX, OXE

We also know that the derivative dy/dt can be treated as a ratio of two differentials, dy and dt.
Dividing (1) by the differential dt gives the total derivative of v with respect to t:
dy oy dx, o oy dx;
dt ox, dt ox, dt

We have thus divided the operation of finding the derivative dy/dt into a number of simpler parts.
First, we find the partial derivatives &v/éx; and &y/éxs. Then, we find the ordinary derivatives
dx;/dt and dx./dt. Finally. we substitute these into formula (2) to get dv/dt.

(2)

We have also established an important principle. Suppose that. in the above example. x; = t. Thus,
y = f{x;, x2(x1)). Then (2) becomes

dy oy dx, Oy dx, oy . dy dx, 3)
—— = s e — = —_— = A
dx, ox, dx, ox, dx, 0%, ox, dx,

direct effect ndirect effect

This clearly illustrates the difference between the partial derivative év/éx; . and the total derivative
dv/dx,. Unlike the partial derivative, the total derivative allows for any indirect effects on y of a
change in x, , via the other variables in the function.

In general, for a function of n exogenous variables v = f{x;. Xz ... X,), the total derivative with
respect to one of its variables, say x;, is given by
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n

dy o, ode L, o
dx, ox, o, dx, ox, dx,

Example: Given the function v = f(x. w) = 3x - w’, where x = g(w) = 2w + w + 4, find the total
derivative dy/dw.

Solution: The crude way of doing this would be to substitute x = g(w) into v = f{x. w), to get v =
32w +w + 4) - w' = 5w® + 3w +12. Then using the rules of differentiation for a function of a
single variable, dy/dw = 10w + 3. We can get the same result using formula (3) above:

dv/dw = £, + f(dx/dw) = 2w + 3(dw + 1) = 10w + 3.

6.5. An application of the total differential approach to a simple IS-LM model
Suppose that the goods market is characterised by the following three equations:

Y=C+I1+G
C=C) (0<Cy<1)
[=1(Y, 1) (I <0)

where Y, C. I and G denote the usual variables. and r denotes the interest rate. The third equation
savs that investment spending is a decreasing function of the interest rate. G is assumed exogenous.

Furthermore, suppose that the money market is characterised by the following two equations:

Mg =L(Y, 1) (Ly>0.L,<0)

Md = MS
where My and M, denote aggregate demand and supply of money respectively. The equation for My
says that money demand is an increasing function of income, and a decreasing function of the
interest rate. M is assumed to be exogenously given.

The principal aim in this section is to use the above model to make comparative static predictions
about how the equilibrium values of income, Y*, and the interest rate, r*. will alter as we vary the
exogenous variables G and M.,

Simplifying the model. we find the following;

IS curve: Y-CY)-I(Y.1)=G (4)
LM curve: LY. 1) = M, (3)

First, let us consider the slopes of the IS and LM curves respectively.

Totally differentiating (4). we find

dY - CydY - IydY - Ldr = dG
Collecting terms, this equation can be written as

dY(l -Cy-Iy) - Ldr=dG {6)
For a given level of G (so that dG = 0). we can find dr/dY (le. the slope of the IS curve):
rearranging (6) gives dY(1 - Cy - 1y) = Ldr. Thus

dy Gi=y, [

dr| -Gy -1

r
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Depending on the assumptions made about the partial derivatives, we can now draw the IS curve
with the appropriate slope in (Y, 1) space:
r4 cA
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Toxt ¥ T,=0 Y

Let us follow the same procedure in order to examine the slope of the LM curve. First, we totally
differentiate (5) to get

LydY + Ldr = dM, (7
Assuming a given money supply, we must have dM; = 0, so we get

LydY +Ldr=0
This vields

dr . _ Ly
dYly, 5 L,

Again, depending on the assumptions made about the partial derivatives, we can now draw the LM
curve with the appropriate slope in (Y. r) space:
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Secondly, let us investigate the comparative statics of the IS-L.M model.

We can use matrix algebra on equations (6) and (7) (which have been linearised by total
differentiation);

dY(l - Cy - Iy) - Ldr = dG (6)
LydY + Ladr = dM, (7

Putting this two-equation system in matrix form we get
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e S [

Y

A unigue solution to the system exists if and only if the coefficient matrix is mvertible. Its
determinant is (1-Cy-Iv)L; + Ly, and we need this to be nonzero. Assuming (on the basis of
economic theory) that L, < 0, Ly > 0. I, < 0. (1-Cy-Iy) > 0, then (1-Cy-Iy)L, + LLy < 0. Since the
determinant is nonzero given the assumptions of the model, we can now solve (8) using either
Cramer’s rule. or by inverting the coefficient matrix.

Using Cramer’s rule to solve (8) for dY. we find that
da: ~L
s dM, L i L dG+1 dM,

(1-C% -T M + I Loy (1€ L)L T LL,
Hence. to find out how equilibrium Y alters as we increase G (with M; held fixed so that dM, = 0),

T

we divide both sides of this expression by dG: o
dy L,
dG M, =M, (1-C, 'IS')L.- + I Ly

Similarly, to find out how equilibrium Y alters as we increase M, (with G held fixed so that dG =
0). we divide both sides of this expression by dM.: 7 LM,

dy I, o

dMs.G-,-r_‘;o (I-C\ "[\')Lr + 1 LY

r

-t

Y. ;'1 L 4 y

As part of vour assignment for this week. you will be asked to complete the comparative static

4 :
analysis of this model by finding = and dr
G M, =M, dM

slG=G,

6.6. What vou must do before the lecture next week (Thursday, 4th December, ‘Implicit

functions’)
Read Chiang, Fundamental Methods of Mathematical Economics. Chapter 8, pages 187-203, and

make sure you are familiar with all the terms and concepts in these lecture notes. Do all the
problems on the attached assignment sheet for Lecture 6. You will be asked to hand in your
solutions at the start of the class next week,

There will not be a test in the class next week. Instead, I will go carefully over the material in this

lecture. and over the solutions to the assignment for this week. In addition. I will give vou a short

lecture on Jacobian determinants. which you must have got to grips with by the Thursdayv lecture.
(End of Lecture 6)




