
EC2203 QUANTITATIVE METHODS IN ECONOMICS II (1997-1998) 
 

Lecture 7. Implicit functions 
 
7.1. Introduction: equations, functions and implicit functions 
In the class test on Lecture 1 (sets and functions), I asked you to determine which of a set of 
graphs were graphs of functions, and which were not. We saw that, for a graph to be the graph of 
a function, there must be one, and only one, value of y for each value of x. Thus, a circular graph 
(for example) is not the graph of a function, because there are some values of x for which there 
are two corresponding values of y. However, a non-vertical linear graph is the graph of a 
function, because there can only be one value of y for each value of x. 
 
Irrespective of whether or not a graph is the graph of a function, we may be able to interpret it as 
representing an equation relating x and y. For example, the graphs I gave you might represent the 
following equations: 
 
                     (a). y = -2x + 7       (b). y = -x2 + 6x - 8             (c). x = y2 
 
                     (d). y = x2               (e). (x-10)2 + (y-10)2 = 64   (f). x = 4 
 
This illustrates a very important point: all functional relationships can be written as equations, 
but not all equations are functions. For an equation to be a function, it must satisfy the 
condition that for each value of the independent variable x, there is one and only one value of the 
dependent variable y. 
 
The distinction between an equation and a function is important when we consider the concept of 
an implicit function. In the univariate context, an implicit function is a function of the form y = 
f(x) which is implied by an equation of the form F(y, x) = 0. For example, the equation y - 3x4 = 
0 is of the form F(y, x) = 0 and implies the function y = 3x4 (which is of the form y = f(x)). 
Therefore y = 3x4 is an implicit function of the equation y - 3x4 = 0. Similarly, in the multivariate 
context, an implicit function is a multivariate function of the form y = f(x1, . . ., xn) which is 
implied by an equation of the form F(y, x1, . . ., xn) = 0. 
 
Now, an explicit function y = f(x1, x2, . . ., xn) can always be written as y - f(x1, x2, . . ., xn) = 0, 
which is an equation of the form F(y, x1, . . ., xn) = 0. But given an equation F(y, x1, . . ., xn) = 0, 
it is not always convenient, or even possible, to express y as a function of x1, x2, . . ., xn 
explicitly. For example, it can be shown that F(y, x) = 2x2 + 4xy - y4 + 67 = 0 implies a function 
of the form y = f(x) over some subset of E1, but the equation cannot easily be solved for y 
explicitly. As we saw above, we might also have an equation involving x and y (eg. x2 + y2 - 64 = 
0) which is not a function at all (either implicit or explicit). Thus, we want to know the 
conditions under which an equation F(y, x1, . . ., xn) = 0 implicitly defines a function y = f(x1, . . ., 
xn). These conditions are provided by the famous implicit function theorem, which you will often 
come across in your reading. 
 
When setting up mathematical models in economics, we are often faced with situations in which 
we have equations which cannot be solved to get endogenous variables as explicit functions of 
exogenous variables and parameters. In the general-function national income model of the 
previous lecture, for example, we had the equations 
                                                  Y = C(Y, T0) + I0 + G0 
                                                  C = C(Y, T0) 
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Assuming that an equilibrium point (Y*, C*) exists, the implicit function theorem provides the 
conditions under which we can assume that implicit (reduced form) functions  
                                                 Y* = Y*(I 0, G0, T0) 
                                                 C* = C*(I0, G0, T0) 
exist. We can think about these functions (and their partial derivatives), despite the fact that we 
cannot obtain expressions for them explicitly, provided that the conditions of the implicit 
function theorem are satisfied. 
 
7.2. The implicit function theorem 
Suppose our model contains an equation F(y, x1, . . ., xn) = 0 which we know is satisfied at a 
particular point (y*, x1*, . . ., xn*) in En+1. In other words, we know that F(y*, x1*, . . ., xn*) = 0. 
The implicit function theorem tells us that a function y = f(x1, . . ., xn) is defined over some 
subset of En which contains the point (x1*, . . ., xn*), provided that the following two conditions 
are satisfied: 
(i). F(y, x1, . . ., xn) has continuous partial derivatives ∂F/∂y, ∂F/∂x1, ∂F/∂x2, . . ., ∂F/∂xn. 
(ii). At the point (y*, x1*, . . ., xn*), we have ∂F/∂y ≠ 0. 
 
If these conditions are satisfied, the implicit function theorem means that we can think about a 
function y = f(x1, . . ., xn) and its partial derivatives ∂y/∂x1, ∂y/∂x2, . . ., ∂y/∂xn, even if our model 
only contains an equation F(y, x1, . . ., xn) = 0 which cannot be solved for y. The partial 
derivatives ∂y/∂x1, ∂y/∂x2, . . ., ∂y/∂xn can be obtained directly from the equation F(y, x1, . . ., xn) 
= 0 using a simple formula which is derived as follows. First, totally differentiate F(y, x1, . . ., xn) 
= 0 to get 
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Suppose we want to obtain an explicit expression for the partial derivative ∂y/∂xi. Recall that in 
order to partially differentiate y = f(x1, . . ., xn) with respect to xi, we treat all the arguments of 
f(x1, . . ., xn) apart from xi as constants. Thus, all the differentials of the exogenous variables 
apart from dxi must be equal to zero, so equation (1) above reduces to 
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Solving this equation for dy/dxi we get 
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We can use this formula to get all the partial derivatives ∂y/∂x1, ∂y/∂x2, . . ., ∂y/∂xn directly from 
the equation F(y, x1, . . ., xn) = 0, without first having to solve it for y. 
 
Example: Find explicit expressions for the partial derivatives ∂y/∂x and ∂y/∂w of any implicit 
functions that may be defined by F(y, x, w) = y3x2  + w3 + yxw - 3 = 0 around the point (y, x, w) 
= (1, 1, 1). 
 
Solution: Clearly, it is not easy to solve the given equation for y. However, we have F(1, 1, 1) = 0 
(verify this for yourself), so we know that the equation F(y, x, w) = 0 holds at the point (1, 1, 1). 
The partial derivatives of F(y, x, w) are 

   
∂
∂
F

y
 =  3y x  +  xw 2 2               

∂
∂
F

x
x  =  2y +  yw3                    

∂
∂

F

w
 =  3w  +  yx2  



EC2203 QUANTITATIVE METHODS IN ECONOMICS II (1997-1998) 
 

and these are all continuous. Thus, the first condition of the implicit function theorem is 
satisfied. If we evaluate the partial derivative ∂F/∂y at the point (y, x, w) = (1, 1, 1) we get ∂F/∂y 
= 3(1)2(1)2 + (1)(1) = 4 ≠ 0, so the second condition of the implicit function theorem is satisfied. 
It follows that an implicit function y = f(x, w) exists around the point (y, x, w) = (1, 1, 1). Using 
formula (3) above, we get the two desired expressions for the partial derivatives of y = f(x, w): 
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7.3. Extension of the implicit function theorem to the simultaneous equation case 
Often, our mathematical model will be in the form of a simultaneous equation system 
                                         F1(y1, . . ., yn, x1, . . ., xm)  =  0 
                                         F2(y1, . . ., yn, x1, . . ., xm)  =  0 
                                                            M                   M  M                                                          (4) 
                                         Fn(y1, . . ., yn, x1, . . ., xm)  =  0 
which we know is satisfied at a particular point (y1*, . . ., yn*, x1*, . . ., xm*). In other words, we 
know that  
                                         F1(y1*, . . ., yn*, x1*, . . ., xm*)  =  0 
                                         F2(y1*, . . ., yn*, x1*, . . ., xm*)  =  0 
                                                               M                       M  M                                                          
                                         Fn(y1*, . . ., yn*, x1*, . . ., xm*)  =  0 
In this case, the implicit function theorem tells us that a set of functions 
                                          y1 = f1(x1, . . ., xm) 
                                          y2 = f2(x1, . . ., xm)   
                                           M              M                                                                                    (5) 
                                          yn = fn(x1, . . ., xm) 
is defined over some subset of Em which contains the point (x1*, . . ., xm*), provided that the 
following two conditions are satisfied: 
(i). F1, F2, . . ., Fn all have continuous partial derivatives with respect to all the variables y1, . . . , 
yn, x1, . . ., xm. 
(ii). At the point (y1*, . . ., yn*, x1*, . . ., xm*), the following Jacobian determinant is non-zero: 
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If these conditions are satisfied, we can find the partial derivatives of the implicit functions in (5) 
directly from the n equations in (4) above, without having to solve them for y1, . . ., yn. The 
formula for doing this is derived as follows. First, we take the total differential of each equation 
in (4) above. This gives us a system of n differential equations of the form 
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Suppose we are interested in the partial derivatives ∂y1/∂xi, ∂y2/∂xi, . . ., ∂yn/∂xi. Holding all 
exogenous variables constant apart from xi, it must be the case that all the differentials of the 
exogenous variables apart from dxi are zero. Thus, the system (6) above reduces to 
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Dividing every equation in (7) throughout by dxi, and taking the ∂Fj/∂xi term in each equation to 
the right hand side gives us the system 
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which can also be written in terms of partial derivatives as 
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since we are holding all exogenous variables apart from xi constant. The final step is to realise 
that we can rewrite (8) in matrix form as 
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The coefficient matrix in this system has a determinant which is |J| ≠ 0 by condition (ii) of the 
implicit function theorem, so there must be a unique solution vector. Using Cramer’s rule, this 
solution can be expressed as 
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where Ji is the matrix obtained by replacing the ith column of the coefficient matrix in (9) with 
the (constant) vector on the right hand side of (9). Using a similar procedure, all the partial 
derivatives of the implicit functions in (5) with respect to the other exogenous variables x1, x2, . . 
., xn can also be obtained. 
 
7.4. An application to the comparative static analysis of a simple market model 
Suppose there is a single-commodity market described by the following equations: 
                                                   Qd = D(P, Y)                                    (DP < 0, DY > 0) 
                                                   Qs = S(P)                                          (SP > 0) 
                                                   Qd = Qs 
It is assumed that D(P, Y) and S(P) have continuous partial derivatives. The symbol Y denotes 
income, which is assumed to be exogenously determined. Note that this model comprises 
functions in general (not specific) form, and we cannot therefore solve explicitly for equilibrium 
price and quantity (P* and Q*) as functions of Y.  
 
Setting Qd = Qs = Q* (ie. imposing the equilibrium condition on the model), we can rewrite the 
first two equations in the above system in implicit form as 
                                         F1(P*, Q*; Y) = D(P*, Y) - Q* = 0 
                                         F2(P*, Q*;Y)  = S(P*)      - Q* = 0                                                  (10) 
We know that these equations must hold simultaneously at the equilibrium point (P*, Q*, Y). 
The conditions of the implicit function theorem are satisfied, since the demand and supply 
functions are both assumed to have continuous partial derivatives, so all the partial derivatives 
∂F1/∂P = DP, ∂F1/∂Q = -1,∂F1/∂Y = DY, ∂F2/∂P = SP, ∂F2/∂Q = -1, ∂F2/∂Y = 0 are continuous. In 
addition, |J| ≠ 0, regardless of where it is evaluated: 
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Thus, it must be true that |J| ≠ 0 at the equilibrium point (P*, Q*, Y).  
 
The implicit function theorem allows us to write the implicit functions P* = P*(Y) and Q* = 
Q*(Y), which have continuous derivatives ∂P*/∂Y and  ∂Q*/∂Y. These derivatives can be 
obtained directly from system (10) above. 
 
Totally differentiate the two equations in (10) to get 
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Dividing through by dY, and putting ∂D/∂Y (and ∂S/∂Y = 0) on the right hand side we get 
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This sytem can be written in matrix form as 
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Using Cramer’s rule, you should verify for yourself that this system implies dP*/dY = DY/(SP-DP) 
> 0, and dQ*/dY = SPDY/(SP-DP) > 0. Thus, both the equilibrium quantity and the equilibrium 
price are positively correlated with the level of income. 
 
7.5. What you must do before next week 
Read Chiang, Fundamental Methods of Mathematical Economics, Chapter 8, pages 204-227, and 
make sure you are familiar with all the terms and concepts in these lecture notes. Do all the 
questions in the attached assignment sheet for Lecture 7. You will get very similar questions in 
your exam on December 18th. 
 
There will be a short written test at the start of the class next week, in which I will ask you 
to analyse the comparative statics of a simple modified version of the IS-LM model of the 
previous lecture (Lecture 6. Total differentials). Again, you will be required to do something 
very similar in your exam. 

 
(End of Lecture 7)  

 


