EC2203 QUANTITATIVE METHODS IN ECONOMICS 1 (1997-1998)
Copyright © 2022

. - . Dr Christian P H Salas
L ecture 8. Unconstrained optimisation

8.1. Higher derivatives
The derivative of afunction isitself afunction. For example, if f(x) = x?, df/dx = 2x. In the case
where the derivative of the function is itself differentiable, we can differentiate again to get the
second and higher derivatives eg. for f(x) = x* we have
df/dx = f '(x) = 2x (first derivative)

df/dx® = f "(x) = 2 (second derivative)

d*f/dx® = f @(x) = 0 (third derivative)
and so on. In general, the nth derivative of y = f(x) iswritten asd "f/dx" or f ®.

In exactly the same way, we can define the second (and higher) derivatives of multivariate
functions. For what follows, we only need the second derivatives of such functions. For example,
if y = f(Xq, Xo) = -2%,% X7 -2X1X, the first derivatives are
af/axl = fl = '4)(1'2)(2
6f/6X2 = fg = '2)(2'2)(1
and each of these partial derivatives is itsef a differentiable function. We can partialy
differentiate f; and f, again with respect to each of the variables x; and x, to get the second-order
partials:
azf/axlz = f]_]_ =-4 azf/aX]_Xz = f12 =-2
azf/a)(gxl = fgl =-2 62f/6X22 = f22 =-2
Note that both the cross-partials are the same, in accordance with Y oung' s theorem.

In general, afunction of n variables has n? second derivatives which, as we saw in Lecture 5, can
be formed into amatrix. Let f be a function of n variables, Xy, . . ., X,. Then the Hessian matrix
of f, denoted by H, isan nxn matrix whose ijth element is 8°f/dx; & = .

Remember that H is always symmetric, since f;; = f;; by Young's theorem. In the example above,
wherey = f(xy, X2) = -2X;° -Xo” -2X1Xo, We have

<23

8.2. Unconstrained optimisation: the general problem

The general unconstrained optimisation problem is to find values of (xy, . . ., X;) that maximise
(or minimise) an abjective function y = f(xy, . . ., X,). Problems like this arise quite often in

economics, and we look at some examples below. We can write this problem as
(U) Choose (Xy, - - -, Xp) to maximise or minimisey =f(Xy, . . ., Xp)

The variables x4, . . ., X, are called choice variables, and the values of the choice variables that
solve (U) above are called the solution values. Note that there is no restriction placed on (x, . . .,
Xn)- For example, the x; need not be positive. If the x; were constrained to be positive, or to satisfy
a budget constraint etc., the problem would be one of constrained, rather than unconstrained,
optimisation. We shall consider constrained optimisation problems separately in the next lecture,
asthey are usually more complex.
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If we know the functional form of the objective fition f (quadratic, exponential etc..), and the
function is differentiable, we can use calculuh&dp solve (U) ie. to find the solution values.
First, we have the following important definitions:

f(x*) is a global maximumof f if f(x*) = f(x) for all x # x*. Similarly, f(x*) is a global
minimum of f if f(x*) <f(x) for all x Zx*. f(x*) is a local maximumof f if f(x*) =f(x) for all x
which are ‘close’ to x*. f(x*) is a local minimunof f if f(x*) < f(x) for all x which are ‘close’
to x*.

Maxima and minima are often referred to genericaly‘extrema’, or ‘extreme points’ of the
function. Notice that in attempting to solve probkelike (U) above, we are only interested in a
global maximum or minimum. In the event that there is entlhan one locamaximum or
minimum, calculus cannot generally help us to deewtich one (if any) is global.

8.3. Einding local maxima and minima: functions of one variable (revision)

From your previous studies (either at ‘A’ leveliorQMI), you should already be familiar with
the basic theory of unconstrained optimisation wictions of a single variable. This section
briefly reviews this material for completeness.

We begin by establishing conditions that x* mustessarily satisfy if it is to be a solution to
(V). It is obvious that any maximum or minimum of lbcal or global - has the property that the
first derivative of f evaluated at the maximum anmum point is zero. This is the necessary
first-order condition for an extremum. In general, any valfi& éor which this is the case - say
x* - is called a critical valuethe associated value of f, f(x*), is called distzary value and the

pair (x*, f(x*)) is called a stationary point

if f'(x*) = 0; X% a_critical valueof x
f(x*) is a_stationary valuef f
(x*, f(x*)) is a_stationary point

In practice, the critical values of f can usually domputed from the condition(k*) = 0, as is
illustrated in the following simple example:

Example 1 Suppose y = f(x) = Zx 6x¢ + 10. Then the critical values must solve the &éqoa
f'(x*) = 6x*? - 12x* = 0. This equation yields two solutions ¢t x* = 0 and x* = 2.

In general, critical values can correspond to odftthree types: maximaninima and_points of
inflexion. To distinguish between them, we have to lookhat 4¢econd (and possibly higher)
derivatives of f:

Theorem 1 Let x* be a critical value of x ie. x* satisfiethe first-order condition f'(x*) = 0.
Then if f"(x*) < 0, f(x*) is a local maximum, and if f'(x*) > 0, x* is a local minimum.

This result gives sufficientonditions for critical values to belong to locaxima or minima.

Examplel (continuedWe saw above that there are two critical values for the function y =
f(x) = 2x° - 6xX¢ + 10: x* = 0 and x* = 2. Now,'(x) = 6X - 12x, so differentiating again we get

f'(x*) = 12x* - 12, which is_negativevhen x* = 0 (so f(0) is a local maximum), and piesi
when x* = 2 (so f(2) is a local minimum).
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Unfortunately, Theorem 1 above is not applicablaltaccases. Consider the function y = f(x) =
x3, for example. Then sincée(k) = 3%, the unique critical value is x* = 0. But'fx*) = 6x* = 0,
so Theorem 1 does not apply. We can use the fallpwiore general theorem:

Theorem 2 Let f ™ be the nth derivative of f. Suppose that x* is dtical value of x, and
suppose that f)(x*) is the first nonzero derivative of f ie.?)(x*) = 0 for all m < n. Then:

(i). if n is evenand f™(x*) < 0, f(x*) is a local maximum, whereas if n isvenand f™(x*) > 0,
f(x*) is a local mimimum.

(i)). if nis odd, f(x*) is neither a minimum nor a maximum ((x*, &*)) is a point of inflexion).

Example 2 For y = f(x) = X, we already know that the unique critical valueis= 0. The first
nonzero derivative at x = 0 i§§0) = 6, so x* = 0 corresponds to a point of inftexie. f(x*) is
neither a maximum or a minimum.

8.4. Finding local maxima and minima: functions of many variables

In this case, the analysis is much the same. Ringtyvector x = (¥ . . ., %) which yields a local
(or global) maximum or minimum of f must be a @di value. The critical values of x in the
multivariate case are defined as follows:

(X1*, . . ., %*) is a critical valueof xi, . . ., % for the functiony = f(x, . . ., %) if it solves the n
equations

F(X*, .., %) &K =0 i=1,...,n
These n equations constitute the necessary (et-tinder’) conditions for an extremum.
Example 3 Suppose the function is y = f(xx;) = -2x%° + 2xx, - X,°. Then the two equations
defining the critical values ofpand » are: f = -4x + 2% = 0 and § = 2% -2%, = 0. These have
the unique solution X = 0 and %* = 0. These are the critical values of and % for this
function.

Again, as in the case of single-variable functidhere are several types of critical value. We are
interested in picking out the critical values whmbrrespond to maxima or minima. To do this,
we can use a generalisation of Theorem 1 abovehagriovides sufficientonditions for critical
values to yield maxima or minima.

Theorem 3 Let x* = (X¢*, . . ., %*) be a critical value of X, . . ., % for the functiony = f(x, . .
. %,). Then:

(). if H evaluated at x* is_negative definitd(x,* , . . ., %*) is a local maximum;

(if). if H evaluated at x* is_positive definitef(x,*, . . ., %*) is a local minimum.

Example 3 (continued)Consider the function y = f(xx,) = -2x2 + 2xX, - X,° again. We already
know that the unique critical values ofand % are x* = 0 and %* = 0. Differentiating f and §
(given in example 3 above), we find the followingeddian matrix (which happens to be

I I 11 12

The first principal minor of H is -4 < 0, and thecsnd is (-4)(-2) - (2)(2) =4 > 0, so H is
negative definite everywhere. Thus,f(xx,*) = f(0, 0) is a local maximum.
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8.5. From local to global: concavity and convexity

So far, we have seen that calculus can be usedctid the locamaxima and minima of
functions. But when there is more than one locélesum, calculus cannot tell us which one (if
any) is global. Now we introduce the conceptsaicavity and convexity of functions, which
guarantee that any local maximum or minimum fousth@ calculus is also a global one. In the
context of single-variable functions, we begin wittle following basic definition:

If f "(x) =0 for every x in the domain of the function, thehis said to be_concaven that
domain. If f "(x) = O for every x in the domain of the function, thehis convexon that
domain.

If the weak inequalities are replaced by strictoimethe above definition, f is said to be either
strictly concaveor strictly convexas appropriateNote that a function is_bothconcave and
convex when f'(x) = 0 for every x in its domain. Thus, since dilhear functions of x have the
property that f*(x) = 0, all linear functions are both concave armbnvex. In general, a point
at which f"(x) = 0 is called a_point of inflexionNote finally that if a function f is concave,
then -f is convex, and vice versa.

Examples

(i). Suppose y = f(x) = lag. Then f"(x) = -x? < 0 for all x in the domain of f (which is the €&t
={x| x > 0}), so fis strictly concave on D.

(ii). Suppose y = f(x) == ™. Then f"(x) = (-:2+4¥) €™, so f is strictly concave wher/(1/2) <
x <V(1/2), strictly convex when x </¢1/2) or x >/(1/2), and both concave and convex when
x = /(1/2) or x =V(1/2).

For multivariate functions, the definition can bdemded as follows. Let y = f(x. . ., %) be a
multivariate function, with a Hessian matrix H. The

f is concaveon its domain D if H is_negative semidefinifer every (%, . . ., %)LD. f is convex
on D if H is positive semidefinitéor every (x, . . ., %)LD.

As before, if the weak inequality is replaced bytect one (ie. if H is negative or positive
definite rather than semidefinifethen f is said to be either strictly concavrestrictly convexas
appropriate.

Example Suppose y = f(X X2) = -2%° X -2XX,. Then
_4 —_
H=
_2 —_
which is independent ofpyand %, and negative definite, so f is strictly concavergwhere.
The main significance of concavity/convexity is fb#owing:
Theorem 4 If f is concave on D, then if (¥, . . ., x,*) is a critical value of (x, . . ., %), it also

yields a global maximum of f. If f is convex on Bhen if (X*, . . ., %*) is a critical value of
(X1, . . ., %), it also yields a global minimum of f.
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Some important properties of concave and convegtioms are as follows:

(a). If g is a concave function, then f = a + bg,20, is also concave.

(b). If g and h are both concave functions, therrfg + h is also concave.

(c). (a) and (b) above together imply that if fA& f > + Af 2 + Z# Af ", where the f are
concave and thel; are non-negative, then f is also concave.

All these properties are also true for convex fiomd.

(End of Lecture8)



