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Lecture 8. Unconstrained optimisation 
 
8.1. Higher derivatives 
The derivative of a function is itself a function. For example, if f(x) = x2, df/dx = 2x. In the case 
where the derivative of the function is itself differentiable, we can differentiate again to get the 
second and higher derivatives eg. for f(x) = x2  we have  
                                                    df/dx ≡ f '(x) = 2x (first derivative)  
                                                  d2f/dx2 ≡ f ''(x) = 2 (second derivative)  
                                                  d3f/dx3 ≡ f (3)(x) = 0 (third derivative)  
and so on. In general, the nth derivative of y = f(x) is written as d nf/dxn or f (n). 
 
In exactly the same way, we can define the second (and higher) derivatives of multivariate 
functions. For what follows, we only need the second derivatives of such functions. For example, 
if y = f(x1, x2) = -2x1

2 -x2
2 -2x1x2, the first derivatives are  

                                                         ∂f/∂x1 ≡ f1 = -4x1-2x2  
                                                         ∂f/∂x2 ≡ f2 = -2x2-2x1  
and each of these partial derivatives is itself a differentiable function. We can partially 
differentiate f1 and f2 again with respect to each of the variables x1 and x2 to get the second-order 
partials: 
                                     ∂2f/∂x1

2 ≡ f11 = -4                   ∂2f/∂x1x2 ≡ f12 = -2 
                                   ∂2f/∂x2x1 ≡ f21 = -2                    ∂2f/∂x2

2 ≡ f22 = -2 
Note that both the cross-partials are the same, in accordance with Young’s theorem. 
 
In general, a function of n variables has n2 second derivatives which, as we saw in Lecture 5, can 
be formed into a matrix. Let f be a function of n variables, x1, . . ., xn. Then the Hessian matrix 
of f, denoted by H, is an n××××n matrix whose ijth element is ∂∂∂∂ 2f/∂∂∂∂xi ∂∂∂∂xj = f ij.   
 
Remember that H is always symmetric, since f ij = f ji by Young’s theorem. In the example above, 
where y = f(x1, x2) = -2x1

2 -x2
2 -2x1x2, we have  

                                                        H = 
− −
− −










4 2

2 2
 

 
8.2. Unconstrained optimisation: the general problem 
The general unconstrained optimisation problem is to find values of (x1, . . ., xn) that maximise 
(or minimise) an objective function y = f(x1, . . ., xn). Problems like this arise quite often in 
economics, and we look at some examples below. We can write this problem as 
 
                 (U)      Choose (x1, . . ., xn) to maximise or minimise y = f(x1, . . ., xn) 
 
The variables x1, . . ., xn are called choice variables, and the values of the choice variables that 
solve (U) above are called the solution values. Note that there is no restriction placed on (x1, . . ., 
xn). For example, the xi need not be positive. If the xi were constrained to be positive, or to satisfy 
a budget constraint etc., the problem would be one of constrained, rather than unconstrained, 
optimisation. We shall consider constrained optimisation problems separately in the next lecture, 
as they are usually more complex. 
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If we know the functional form of the objective function f (quadratic, exponential etc..), and the 
function is differentiable, we can use calculus to help solve (U) ie. to find the solution values. 
First, we have the following important definitions: 
 
f(x*) is a global maximum of f if f(x*) ≥≥≥≥ f(x) for all x ≠≠≠≠ x*. Similarly, f(x*) is a global 
minimum of f if f(x*) ≤≤≤≤ f(x) for all x ≠≠≠≠ x*. f(x*) is a local maximum of f if f(x*) ≥≥≥≥ f(x) for all x 
which are ‘close’ to x*. f(x*) is a local minimum of f if f(x*) ≤≤≤≤  f(x) for all x which are ‘close’ 
to x*. 
 
Maxima and minima are often referred to generically as ‘extrema’, or ‘extreme points’ of the 
function. Notice that in attempting to solve problems like (U) above, we are only interested in a 
global maximum or minimum. In the event that there is more than one local maximum or 
minimum, calculus cannot generally help us to decide which one (if any) is global. 
 
8.3. Finding local maxima and minima: functions of one variable (revision) 
From your previous studies (either at ‘A’ level or in QMI), you should already be familiar with 
the basic theory of unconstrained optimisation of functions of a single variable. This section 
briefly reviews this material for completeness. 
 
We begin by establishing conditions that x* must necessarily satisfy if it is to be a solution to 
(U). It is obvious that any maximum or minimum of f - local or global - has the property that the 
first derivative of f evaluated at the maximum or minimum point is zero. This is the necessary or 
first-order condition for an extremum. In general, any value of x for which this is the case - say 
x* - is called a critical value, the associated value of f, f(x*), is called a stationary value, and the 
pair (x*, f(x*)) is called a stationary point: 
 
             if f '(x*) = 0;                                        x* is a critical value of x 
                                                                     f(x*) is a stationary value of f 
                                                            (x*, f(x*)) is a stationary point 
 
In practice, the critical values of f can usually be computed from the condition f '(x*) = 0, as is 
illustrated in the following simple example: 
Example 1: Suppose y = f(x) = 2x3 - 6x2 + 10. Then the critical values must solve the equation 
f '(x*) = 6x*2 - 12x* = 0. This equation yields two solutions for x*: x* = 0 and x* = 2. 
In general, critical values can correspond to points of three types: maxima, minima, and points of 
inflexion. To distinguish between them, we have to look at the second (and possibly higher) 
derivatives of f: 
 
Theorem 1: Let x* be a critical value of x ie. x* satisfies the first-order condition f '(x*) = 0. 
Then if f ''(x*) < 0, f(x*) is a local maximum, and if f ''(x*) > 0, x* is a local minimum. 
 
This result gives sufficient conditions for critical values to belong to local maxima or minima. 
 
Example1 (continued): We saw above that there are two critical values of x for the function y = 
f(x) = 2x3 - 6x2 + 10: x* = 0 and x* = 2. Now, f'(x) = 6x2 - 12x, so differentiating again we get 
f ''(x*) = 12x* - 12, which is negative when x* = 0 (so f(0) is a local maximum), and positive 
when x* = 2 (so f(2) is a local minimum). 
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Unfortunately, Theorem 1 above is not applicable to all cases. Consider the function y = f(x) = 
x3, for example. Then since f '(x) = 3x2, the unique critical value is x* = 0. But f ''(x*) = 6x* = 0, 
so Theorem 1 does not apply. We can use the following more general theorem: 
 
Theorem 2: Let f (n) be the nth derivative of f. Suppose that x* is a critical value of x, and 
suppose that f (n)(x*) is the first nonzero derivative of f ie. f (m)(x*) = 0 for all m < n. Then: 
(i). if n is even and f (n)(x*) < 0, f(x*) is a local maximum, whereas if n is even and f (n)(x*) > 0, 
f(x*) is a local mimimum. 
(ii). if n is odd, f(x*) is neither a minimum nor a maximum ((x*, f(x*)) is a point of inflexion). 
 
Example 2: For y = f(x) = x3, we already know that the unique critical value is x* = 0. The first 
nonzero derivative at x = 0 is f(3)(0) = 6, so x* = 0 corresponds to a point of inflexion ie. f(x*) is 
neither a maximum or a minimum. 
 
8.4. Finding local maxima and minima: functions of many variables 
In this case, the analysis is much the same. First, any vector x = (x1, . . ., xn) which yields a local 
(or global) maximum or minimum of f must be a critical value. The critical values of x in the 
multivariate case are defined as follows: 
 
(x1*, . . ., xn*) is a critical value of x1, . . ., xn  for the function y = f(x1, . . ., xn) if it solves the n 
equations  
                                         ∂∂∂∂f(x1*, . . ., xn*)/ ∂∂∂∂xi = 0                         i = 1, . . ., n 
These n equations constitute the necessary (or ‘first-order’) conditions for an extremum. 
Example 3: Suppose the function is y = f(x1, x2) = -2x1

2 + 2x1x2 - x2
2. Then the two equations 

defining the critical values of x1 and x2 are: f1 = -4x1 + 2x2 = 0 and f2 = 2x1 -2x2 = 0. These have 
the unique solution x1* = 0 and x2* = 0. These are the critical values of x1 and x2 for this 
function. 
 
Again, as in the case of single-variable functions, there are several types of critical value. We are 
interested in picking out the critical values which correspond to maxima or minima. To do this, 
we can use a generalisation of Theorem 1 above, which provides sufficient conditions for critical 
values to yield maxima or minima. 
 
Theorem 3: Let x* = (x1*, . . ., xn*) be a critical value of x1, . . ., xn  for the function y = f(x1, . . 
., xn). Then: 
(i). if H evaluated at x* is negative definite, f(x1*  , . . ., xn*) is a local maximum; 
(ii). if H evaluated at x* is positive definite, f(x1*  , . . ., xn*) is a local minimum. 
 
Example 3 (continued): Consider the function y = f(x1, x2) = -2x1

2 + 2x1x2 - x2
2 again. We already 

know that the unique critical values of x1 and x2 are x1* = 0 and x2* = 0. Differentiating f1 and f2 
(given in example 3 above), we find the following Hessian matrix (which happens to be 
independent of x1 and x2): 

                                            H = 
f f

f f
11 12

21 22









  = 

−
−











4 2

2 2
 

The first principal minor of H is -4 < 0, and the second is (-4)(-2) - (2)(2) = 4 > 0, so H is 
negative definite everywhere. Thus, f(x1*, x2*) = f(0, 0) is a local maximum. 
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8.5. From local to global: concavity and convexity 
So far, we have seen that calculus can be used to locate the local maxima and minima of 
functions. But when there is more than one local extremum, calculus cannot tell us which one (if 
any) is global. Now we introduce the concepts of concavity and convexity of functions, which 
guarantee that any local maximum or minimum found using calculus is also a global one. In the 
context of single-variable functions, we begin with the following basic definition: 
 
If f ''(x) ≤≤≤≤ 0 for every x in the domain of the function, then f is said to be concave on that 
domain. If f ''(x) ≥≥≥≥ 0 for every x in the domain of the function, then f is convex on that 
domain. 
 
If the weak inequalities are replaced by strict ones in the above definition, f is said to be either 
strictly concave or strictly convex as appropriate. Note that a function is both concave and 
convex when f ''(x) = 0 for every x in its domain. Thus, since all linear functions of x have the 
property that f ''(x) = 0, all linear functions are both concave and convex. In general, a point 
at which f ''(x) = 0 is called a point of inflexion. Note finally that if a function f is concave, 
then -f is convex, and vice versa.  
Examples: 
(i). Suppose y = f(x) = logex. Then f ''(x) = -x-2 < 0 for all x in the domain of f (which is the set D 
= {x| x > 0}), so f is strictly concave on D. 

(ii). Suppose y = f(x) = e−x2

. Then f ''(x) = (-2+4x2) e−x2

, so f is strictly concave when -√(1/2) < 
x < √(1/2), strictly convex when x < -√(1/2)  or x > √(1/2), and both concave and convex when  
x = -√(1/2)  or x = √(1/2).  
 
For multivariate functions, the definition can be extended as follows. Let y = f(x1, . . ., xn) be a 
multivariate function, with a Hessian matrix H. Then: 
 
f is concave on its domain D if H is negative semidefinite for every (x1, . . ., xn)∈∈∈∈D. f is convex 
on D if H is positive semidefinite for every (x1, . . ., xn)∈∈∈∈D.  
 
As before, if the weak inequality is replaced by a strict one (ie. if H is negative or positive 
definite rather than semidefinite), then f is said to be either strictly concave or strictly convex as 
appropriate. 
 
Example: Suppose y = f(x1, x2) = -2x1

2 -x2
2 -2x1x2. Then  

                                                      H = 
− −
− −










4 2

2 2
 

which is independent of x1 and x2, and negative definite, so f is strictly concave everywhere.    
 
The main significance of concavity/convexity is the following: 
 
Theorem 4: If f is concave on D, then if (x1*, . . ., xn*) is a critical value of (x1, . . ., xn), it also 
yields a global maximum of f. If f is convex on D, then if (x1*, . . ., xn*) is a critical value of 
(x1, . . ., xn), it also yields a global minimum of f. 
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Some important properties of concave and convex functions are as follows: 
 
(a). If g is a concave function, then f = a + bg, b ≥≥≥≥ 0, is also concave. 
(b). If g and h are both concave functions, then f = g + h is also concave. 
(c). (a) and (b) above together imply that if f = λλλλ1 f 

1 + λλλλ2f 
2 + ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ + λλλλnf 

n, where the f i are 
concave and the λλλλi are non-negative, then f is also concave. 
 
All these properties are also true for convex functions. 
 

 (End of Lecture 8)    


