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Supplementary Lecture 2. Quadratic forms 
 
S2.1. Linear and quadratic forms 
A linear equation in the n variables x1, x2, ..., xn is one that can be expressed in the form 
                                         a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b 
The left hand side of this equation is a function of n variables called a linear form. In a linear 
form, all variables occur to the first power (ie. there are no terms xi

n for n > 1), and there are 
no products of variables in the expression. 
 
In functions called quadratic forms, all the terms are either squares of variables, or products of 
two variables. A quadratic form in two variables, x and y, is defined to be an expression that 
can be written as ax2 + 2bxy + cy2. This expression can be written in matrix terms as follows: 
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Note that the (2×2) matrix is symmetric; the diagonal entries are the coefficients of the 
squared terms, and the entries off the main diagonal are each equal to half the coefficient of 
the product term xy. 
 
Quadratic forms are not limited to two variables. A general quadratic form in x1, x2, ..., xn is 
an expression that can be written in matrix terms as     
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where A is a symmetric (n×n) matrix. It can also be written more compactly as x'Ax. If these 
matrices are multiplied out, the resulting expression has the form 

                             x'Ax = a11x1
2 + ⋅ ⋅ ⋅ + annxn

2 + a x xij i
i j
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where a x xij i
i j

j
≠
∑   denotes a sum of terms of the form aijxixj, where xi and xj are different 

variables. They are called the cross-product terms of the quadratic form.  
 
 
Example: The following expression is a quadratic form in x1, x2 and x3: 
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Notice that the coefficients of the squared terms appear on the main diagonal of the (3×3) 
matrix, and the coefficients of the cross-product terms are each split in half, and appear in the 
off-diagonal positions as follows: 
 
                               Coefficient of:             Positions in matrix A: 
                                     x1x2                                                 a12 and a21 
                                     x1x3                                                 a13 and a31 
                                     x2x3                                                 a23 and a32 
 
So in terms of a general (3×3) matrix A we have 
 
          x'Ax = a11x1

2 + a22x2
2 + a33x3

2 + (a12 + a21)x1x2 + (a13 + a31)x1x3 + (a23 + a32)x2x3 
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S2.2. Definite matrices 
Consider the following three symmetric matrices: 
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Given a two-dimensional vector x = 
x

x
1
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form: 
 
                                             x'Ax = 4x1

2 + 2x2
2 + 2x1x2 

 
Now, it just so happens that the value of this quadratic form is always strictly positive, 
irrespective of the values of x1 and x2, provided that x1 and x2 are not both zero ie. provided 
that x is not the null vector. Intuitively, this is because the weights on the xi

2 are large and 
positive, and hence ‘outweigh’ the cross-product term 2x1x2, which can be negative (of 
course, x'Ax = 0 when x is the null vector in E2). If we think of the quadratic form x'Ax as a 
function from E2 to E1 (ie. f(x1, x2) = x'Ax = 4x1

2 + 2x2
2 + 2x1x2), then the graph of the 

function is a ‘bowl’ or ‘valley-shaped’ parabola in three dimensions. The value of f (ie. the 
value of the quadratic form x'Ax = 4x1

2 + 2x2
2 + 2x1x2) is strictly positive, no matter what the 

values of x1 and x2 are (as long as they are not both zero).  
 

Now consider the matrix B above. Given a two-dimensional vector x = 
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yields the following quadratic form: 
 
                                             x'Bx = -3x1
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Here, the opposite is true: the terms on the xi

2 are large and negative, so the value of the 

quadratic form f(x1, x2) = x'Bx = -3x1
2 - 2x2

2 + 2x1x2 is strictly negative for any 
x

x
1

2









  ≠ 

0

0








 . 

The quadratic form in this case has a graph which is an ‘upside-down’ bowl, or hill shape in 
three dimensions. Finally, consider the matrix C above. Given a two-dimensional vector x = 

x

x
1

2
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  in E2, matrix C yields the following quadratic form: 

 
                                                      x'Cx = 3x1

2 - 3x2
2 

 
In this case, the value of the function f(x1, x2) = x'Cx = 3x1

2 - 3x2
2 can be both positive and 

negative on E2. It is positive when x1
2 > x2

2, and negative when x1
2 < x2

2. The three-
dimensional graph of f(x1, x2) in this case has a ‘saddle’ shape which I can never draw 
properly, so I’m not going to try! 
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I chose the three examples above very carefully, because it turns out that all quadratic forms 
defined on En  for n ≥ 1 must have one of these three basic ‘shapes’. We use this fact to 
characterise symmetric matrices as follows: 
 
(i). An (n××××n) symmetric matrix A is positive definite if x'Ax > 0 for all x ≠≠≠≠ 0

(n 1)××××
. 

 
(ii). An (n××××n) symmetric matrix A is positive semidefinite if x'Ax ≥≥≥≥ 0 for all x. 
 
(iii). An (n××××n) symmetric matrix A is negative definite if x'Ax < 0 for all x ≠≠≠≠ 0

(n 1)××××
. 

 
(iv). An (n××××n) symmetric matrix A is negative semidefinite if x'Ax ≤≤≤≤ 0 for all x. 
 
If a symmetric matrix is not definite, then it is said to be indefinite. In the three examples I 
gave you above, matrix A was positive definite, matrix B was negative definite, and matrix C 
was indefinite. 
 
As we shall see later in the course, it is extremely important in the application of multivariate 
calculus to optimisation problems to have a criterion for deciding whether a symmetric matrix 
is positive or negative (semi)definite, or indefinite. There are two basic ‘tests’ for establishing 
this: the eigenvalue test (which we do not have time to study in this course), and the principal 
minors test, to which we now turn. 
 
S2.3. The principal minors test for sign definiteness 
The kth principal minor of an (n×n) symmetric matrix A is the determinant of the submatrix 
formed from the first k rows and columns of A. For example, if 
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is a (3×3) symmetric matrix, then the first principal minor is just 
                                                        a11 
the second principal minor is 

                                                  
a a

a a
11 12

21 22

 = a11a22 - a12a21 

and the third principal minor is 

           

a a11 12 a

a a a

a a a

13

21 22 23

31 32 33

 = [a11a22a33 + a12a23a31 + a13a32a21] - [a13a22a31 + a12a21a33 + a11a32a23]  

Obviously, the nth principal minor of an (n×n) matrix A is just the determinant of A, |A|.  
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We have the following: 
(a). An (n××××n) symmetric matrix A is positive definite if and only if 
                                                   a11 > 0 
 

                                             
a a

a a
11 12

21 22

 > 0 

 

                                         

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

 > 0 

                                                    M  
                                                   |A| > 0 
ie. if and only if all the principal minors of A are strictly positive. 
 
(b). An (n××××n) symmetric matrix A is positive semidefinite if and only if 
                                                   a11 ≥≥≥≥ 0 
 

                                             
a a

a a
11 12

21 22

 ≥≥≥≥ 0 
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11 12 13

21 22 23

31 32 33

 ≥≥≥≥ 0 

                                                     M  
                                                   |A| ≥≥≥≥ 0 
ie. if and only if all the principal minors of A are nonnegative (some zero determinants 
are allowed). 
 
(c). An (n××××n) symmetric matrix A is negative definite if and only if the principal minors 
alternate in sign, starting negative ie. if and only if  
                                                   a11 < 0 
 

                                             
a a

a a
11 12

21 22

 > 0 

 

                                         

a a a
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11 12 13

21 22 23

31 32 33

 < 0 

                                                    M  
                                       sign(|A|) = sign((-1)n) 
Notice that sign(|A|) must be positive if n is an even number, and negative if n is an odd 
number. 
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(d). An (n××××n) symmetric matrix A is negative semidefinite if and only if  
                                                   a11 ≤≤≤≤ 0 
 

                                             
a a

a a
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21 22

 ≥≥≥≥ 0 

 

                                         

a a a

a a a
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11 12 13

21 22 23

31 32 33

 ≤≤≤≤ 0 

                                                    M  
                                 sign(|A|) = sign((-1)n) or zero 
Again, some zero determinants are allowed for negative semidefiniteness. 
 
 
Example: The (3×3) matrix 
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3 0 0

0 2 1

0 1 7

 

 
is negative definite, because  
                                            -3 < 0 
 

                                         
−

−
3 0

0 2
 = 6 > 0 

 

                                   

−
−

−

3 0 0

0 2 1

0 1 7

 = -39 < 0 

 
S2.4. Another worked example 
Here is a worked example of the sort of problem you will definitely be asked to solve in a 
test: 
 
Test the following matrix for definiteness using the principal minors test: 

                                           

1 -1 0

-1 3 1

0 1 1
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Solution: The matrix is positive definite, since 
                                                   
                                                    1 > 0 
 

                                                 
1 -1

-1 3
 = 2 > 0 
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1 1 0−
−1 3 1

0 1 1

 = 1 > 0 

 
 

 
 
 

   
                          (End of Supplementary Lecture 2) 
  
 
 


