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Supplementary L ecture 2. Quadratic forms

S2.1. Linear and quadratic forms
A linear equation in the n variables Xy, o, ..., X, iSone that can be expressed in the form

aX1 + aXp + LI aXa = b
The left hand side of this equation is a function of n variables called alinear form. In alinear
form, all variables occur to the first power (ie. there are no terms x;" for n > 1), and there are
no products of variablesin the expression.

In functions called quadratic forms, al the terms are either squares of variables, or products of
two variables. A quadratic form in two variables, x and y, is defined to be an expression that
can be written as ax? + 2bxy + cy®. This expression can be written in matrix terms as follows:

b
o

Note that the (2x2) matrix is symmetric; the diagona entries are the coefficients of the
sguared terms, and the entries off the main diagona are each equal to half the coefficient of
the product term xy.

Quadratic forms are not limited to two variables. A genera quadratic form in Xy, Xa, ..., X, IS
an expression that can be written in matrix terms as

where A is a symmetric (nxn) matrix. It can also be written more compactly as x'Ax. If these
matrices are multiplied out, the resulting expression has the form

X'AX = a1, + [T @)X + Zaijxixj
i%]
where Zaijxix ; denotes a sum of terms of the form ajxx;, where x; and x; are different
i#]

variables. They are called the cross-product terms of the quadratic form.

Example: The following expression is aquadratic form in Xy, X, and Xs:

1 2 -1|x,
X12 + 7X22 - 3X32 + 4X1Xo - 2X1X3 + BXoX3 = [Xl X2 X3] 2 7 3 X2
-1 3 -3|x,

Notice that the coefficients of the squared terms appear on the main diagona of the (3x3)
matrix, and the coefficients of the cross-product terms are each split in half, and appear in the
off-diagona positions asfollows:

Cosfficient of: Positions in matrix A:
X1X2 & and &y
X1X3 &3 and &
XoX3 &3 and ag;

So interms of agenera (3x3) matrix A we have

X'AX = Xy + 8poXs” + BgaXa” + (Ba2 + 1) XaXo + (B3 + Ba1)XaXa + (Bes + Be)XoXa
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S2.2. Definite matrices
Consider the following three symmetric matrices:

SHEIEENHESHM

X
. . . 1
Given a two-dimensional vector x %

X,

} in E%, matrix A yields the following quadratic
form:
'AX = 4x,2 + 2%° + 2% X0

Now, it just so happens that the value of this gaidcl form is _alwaysstrictly positive,
irrespective of the values of &and %, provided that xand % are not both zero ie. provided
that x is not the null vector. Intuitively, this Eecause the weights on thé are large and
positive, and hence ‘outweigh’ the cross-producintexx,, which can be negative (of
course, ¥Ax = 0 when x is the null vector in’E If we think of the quadratic form'Ax as a
function from E to E (ie. f(x, %) = XAX = 4x° + 2%° + 2%X,), then the graph of the
function is a ‘bowl’ or ‘valley-shaped’ parabola three dimensions. The value of f (ie. the
value of the quadratic formiAx = A% + 2%° + 2XXy) is strictly positive, no matter what the
values of x and % are (as long as they are not both zero).

X1

Now consider the matrix B above. Given a two-din@mal vector X :{
X2

} in E2, matrix B
yields the following quadratic form:
'Bx = -3%7 - 2%° + 2%X>
Here, the opposite is true: the terms on tfease large and negative, so the value of the
quadratic form f(x, %) = XBx = -3%°2 - 2%° + 2%X, iS strictly negative for an{:l} Z {8}
2

The quadratic form in this case has a graph whidmi ‘upside-down’ bowl, or hill shape in
three dimensions. Finally, consider the matrix ©wh Given a two-dimensional vector x =

X
{xl} in E%, matrix C yields the following quadratic form:
2

XCx = 3%° - 3%°

In this case, the value of the functionf(x,) = XCx = 3%2 - 3%° can be botlpositive and
negative on E It is positive when ¥ > x? and negative when%< x° The three-
dimensional graph of fgx x;) in this case has a ‘saddle’ shape which | canenevaw
properly, so I'm not going to try!
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I chose the three examples above very carefullyalige it turns out that ajuadratic forms
defined on E for n > 1 must have one of these three basic ‘shapes’u¥gethis fact to
characterise symmetric matrices as follows:

(). An (nxn) symmetric matrix A ispostive definiteif X Ax >0for all x# O .

(nx1)

(if). An (nxn) symmetric matrix A is positive semidefiniteif x'Ax 2 0 for all x.

(iii). An (nxn) symmetric matrix A isnegative definiteif X Ax <Ofor all x # ( 01) .
nx

(iv). An (nxn) symmetric matrix A isnegative semidefiniteif X' Ax < 0for all x.

If a symmetric matrix is not definite, then it igid to be_indefiniteln the three examples |
gave you above, matrix A was positive definite, a8 was negative definite, and matrix C
was indefinite.

As we shall see later in the course, it is extrgnmaportant in the application of multivariate
calculus to optimisation problems to have a cterfior deciding whether a symmetric matrix
is positive or negative (semi)definite, or indetimiThere are two basic ‘tests’ for establishing
this: the_eigenvalugest (which we do not have time to study in tliarse), and the principal
minorstest, to which we now turn.

S2.3. Theprincipal minorstest for sign definiteness
The kth_principal minoof an (kn) symmetric matrix A is the determinaoit the submatrix
formed from the first k rows and columns of A. lexample, if

ail a12 a13
A :aZl a’22 a23
a31 a32 a33
is a (X3) symmetric matrix, then the first principal mirisfjust
a1
the second principal minor is
SR T
a21 a22
and the third principal minor is
a; &, a5
Ay By By = [u1BeoBes + AoBpaBe1 + Q13B2801] - [Au3teoBe1 + A2B0186s + Q11882803
a31 a32 a3

Obviously, the nth principal minor of anXim) matrix A is just the determinant of A, |A]|.
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We have the following:
(a). An (nxn) symmetric matrix A ispositive definiteif and only if

a;;>0
a a
1 2| 50
a; axp

a11 a12 a13
a21 a22 a23 >0
a'31 a32 a33

|A| >0
ie. if and only if all the principal minorsof A arestrictly postive.

(b). An (nxn) symmetric matrix A ispositive semidefiniteif and only if

a; 20
a a
11 12 >
a'21 a22

|A|=0
ie. if and only if all the principal minors of A are nonnegative (some zero deter minants
areallowed).

(c). An (nxn) symmetric matrix A is negative definite if and only if the principal minors
alternatein sign, starting negativeie. if and only if

a1 <0
a a
1 2l
a, ayp

sign(JA]) = sign((-1)")
Notice that sign(JA]) must be positive if n isan even number, and negative if n is an odd
number.
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(d). An (nxn) symmetric matrix A isnegative semidefiniteif and only if

a1 < 0
all a12 > 0
a21 a22

sign(JA]) =sign((-1)") or zero
Again, some zer o determinants are allowed for negative semidefiniteness.

Example The (33) matrix

-3 0 O

0o -2 1

0O 1 -7

is negative definitebecause
-3<0
=6>0
0 —

-3 0 O
0 -2 1/=-39<0
0O 1 -

S2.4. Another worked example
Here is a worked example of the sort of problem wdlli definitely be asked to solvi a

test:

Test the following matrix for definiteness using the principal minorstest:

1 10
-1 3 1
0 1 1

Solution The matrix is positive definite, since

1>0

1 -
=2>0
.
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1 -1
-1 3 =1>0
0 1

(End of Supplementary L ecture 2)



