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Lecture 9. Constrained optimisation 
 
9.1. Introduction 
Problems of maximisation or minimisation subject to constraints are central to microeconomics, 
and also arise in macroeconomics and econometrics. The general problem can be stated as 
follows: 
 
(CO)       Choose (x1, . . ., xn) to maximise y = f(x1, . . ., xn) subject to (x1, . . ., xn)∈C. 
 
The set C is a subset of the domain of the function, within which all n-dimensional vectors of the 
form (x1, . . ., xn) satisfy one or more constraints. The function f is known as the objective 
function, and C is a subset of En known as the constraint set. Note that the case where the 
objective function is to be minimised (eg. a cost minimisation problem) is covered by this 
formulation, since minimisation of f is equivalent to maximisation of -f. 
 
The form the constraint set takes depends on the problem at hand. For example, if the problem is 
one of consumer utility maximisation, then the constraint set would be the set of quantities of the 
various goods that were non-negative and which satisfied the budget constraint.  
 
As in the case of the unconstrained optimisation problem (U) in Lecture 8, a solution to (CO) 
may not exist. For example, consider the problem of maximising f(x) = x subject to x∈C, where 
C = { x| x ≥ 10} . There is no value of x < ∞ that solves this problem, as x (and therefore f) can be 
made arbitrarily larger without leaving the constraint set. There is a pair of conditions that are 
jointly sufficient for a solution to (CO) to exist. These are that (i) f is continuous; (ii) C is a 
compact (closed and bounded) set. However, these are not necessary for a problem to have a 
solution. Many economic problems, when set up in mathematical format, do not satisfy these 
conditions, but nevertheless have a solution. It is often quite easy to check existence once the 
particular problem is written down. Therefore from now on, we assume that (CO) has a solution. 
 
Given the existence of a solution, the analysis of the problem (CO) proceeds by simplifying the 
description of the set C. In this course, you will be examined on the simple case, constrained 
optimisation with equality constraints. You will already have met examples of this in micro- and 
macroeconomics. You will not be examined on the more general case, constrained optimisation 
with inequality constraints, as this topic is usually reserved for postgraduate courses. However, I 
will give you some notes on this in due course (probably after Christmas), in case you encounter 
problems of this type in your research work next year. Unconstrained optimisation, constrained 
optimisation with equality constraints, and constrained optimisation with inequality constraints 
are covered in detail in Chapters 9, 11, 12 and 21 of Chiang, Fundamental Methods of 
Mathematical Economics. In my opinion, Chiang’s exposition is a pedagogical ‘masterpiece’ , 
and there is no better introductory treatment of this topic in any other textbook. I strongly 
recommend that you read him if you possibly can.  
 
9.2. Constrained optimisation with equality constraints: first-order (necessary) conditions 
Here, the idea is that the set of vectors (x1, . . ., xn) in C can be written as the set of vectors 
satisfying the implicit relationship g(x1, . . ., xn) = 0, or more formally, C = { x1, . . ., xn| g(x1, . . ., 
xn) = 0} . Often, g = 0 is called the equality constraint, and g is known as the constraint function. 
So the problem (CO) becomes: 
 
(CE)      Choose (x1, . . ., xn) to maximise y = f(x1, . . ., xn) subject to g(x1, . . ., xn) = 0. 
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Examples: 
(i). Suppose the problem is to maximise -(x1

2 + x2
2) subject to x1+x2 = 1. Then f = -(x1

2+x2
2), and  

g = 1- x1 - x2, or g = x1 + x2 - 1. 
(ii). Let x1 and x2 be a consumer’s consumption levels of goods 1 and 2 respectively, and suppose 
that consumer preferences are represented by the utility function u(x1, x2) = β1logex1 + β2logex2. 
Also suppose that the budget constraint is p1x1 + p2x2 = m, where pi is the price of good i, and m 
is income. Then the consumer allocation problem is to choose x1, . . ., xn to maximise utility 
subject to the budget constraint. This is an equality constrained optimisation problem, with f = 
β1logex1 + β2logex2, and g = m - p1x1 - p2x2.  
 
To solve an equality constrained optimisation problem, we begin by defining the Lagrangean 
function for the problem (CE) as 
 
                            L(x1, . . ., xn, λ) = f(x1, . . ., xn) + λg(x1, . . ., xn) 
 
where λ is known as the Lagrange multiplier. 
 
Examples: 
In example (i) above, L(x1, x2, λ) = -(x1

2 + x2
2) + λ(1 - x1 - x2). In example (ii) above, 

 L(x1, x2, λ) = β1logex1 + β2logex2 + λ(m - p1x1 - p2x2). 
 
The Lagrangean function gives us a neat way of writing down the necessary conditions for a 
solution to (CE). 
 
Theorem 1: Given the Lagrangean function L(x1, . . ., xn, λλλλ) = f(x1, . . ., xn) + λλλλg(x1, . . ., xn) for 
problem (CE), any solution values x1*, . . ., xn* for the problem must satisfy the following first-
order conditions: 
                           ∂∂∂∂L/∂∂∂∂xi = ∂∂∂∂f/∂∂∂∂xi  + λλλλ∂∂∂∂g/∂∂∂∂xi  = 0                             i = 1, . . ., n                       (1) 
 
                          ∂∂∂∂L/∂∂∂∂λλλλ = 0                                                                                                       (2) 
 
This result gives us a means of finding x1*, . . ., xn*, as well as the value of the Lagrange 
multiplier λ* at the optimum, which has special significance (see below). 
 
Examples: 
(i). Consider example (i) above again. We had L(x1, x2, λ) = -(x1

2 + x2
2) + λ(1 - x1 - x2), so 

conditions (1) and (2) of Theorem 1 become 
                  ∂L/∂x1 = -2x1 - λ = 0                                          (1) 
                  ∂L/∂x2 = -2x2 - λ = 0                                          (2) 
                   ∂L/∂λ = 1 - x1 - x2 = 0                                       (3) 
This is a system of three equations in three unknowns (x1, x2, and λ). We can solve the system to 
get x1*, x2* and λ* as follows. First, solve equations (1) and (2) for λ to get 
                                 -2x1 = λ    and    -2x2 = λ 
Clearly, these equations imply that x1 = x2. Substituting this result into (3) gives 
                                1 - 2x2 = 0 ⇒ x2* = 1/2, and so x1* = 1/2. 
Then λ* = -2x1* = -2x2* = -1. 
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(ii). Consider example (ii) above. We had L(x1, x2, λ) = β1logex1 + β2logex2 + λ(m - p1x1 - p2x2), 
so conditions (1) and (2) of Theorem 1 become 
                  ∂L/∂x1 = β1/x1 - λp1 = 0                                           (1) 
                  ∂L/∂x2 = β2/x2 - λp2 = 0                                           (2) 
                  ∂L/∂λ = m - p1x1 - p2x2 = 0                                      (3) 
Again, this is a system of three equations in three unknowns, which can be solved for x1*, x2* 
and λ* as follows. First, rearrange (1) and (2) to get 
                            β1 = λp1x1               and             β2 = λp2x2 
Adding these together gives us 
                                    β1 + β2 = λ(p1x1 + p2x2) = λm                (4) 
where the second equality in (4) follows from condition (3). Solving for λ* from (4) gives λ* = 
(β1+β2)/m. Substituting this result into (1) gives  

                                            x1* = 
β

β β
1

1 2 1+
m

p
 

and substituting the result into (2) gives  

                                           x2* = 
β

β β
2

1 2 2+
m

p
 

 
9.3. Second-order (sufficient) conditions 
As in the case of the unconstrained optimisation problem (U) in Lecture 8, first-order necessary 
conditions for a solution to (CE) above may not be sufficient. Sufficiency conditions are usually 
stated in the form of conditions on the sign definiteness of the Hessian of the Lagrangean 
function, evaluated at the point of interest. These conditions get very complicated when there are 
multiple constraints, and it is very difficult to apply them. In practice, mathematical economists 
often rely on considerations of concavity, or other considerations, to ensure that any stationary 
points they find are global maxima or minima. In what follows, we will focus on problems with 
two or three choice variables, and one or two constraints, as these are the ones you will most 
often come across. However, I will give you the general rule for problems with n choice 
variables and m constraints, and I expect you to know it for your exam (you should give it as 
part of your answer to any exam questions on this topic). Chiang (Chapter 12) goes into far 
greater detail, and you should refer to him for more complicated cases.  
 
The second-order sufficient conditions for a problem with two choice variables and one 
constraint are as follows. (Note again that we only need to discuss the case of maximisation, 
since a minimisation problem can be converted to a maximisation problem simply by multiplying 
the objective function by -1). Suppose the problem is 
 
                               max

, ,λ x x1 2

 L(x1, x2, λ) = f(x1, x2) + λg(x1, x2) 

 
By Theorem 1 above, the first-order conditions for a maximum are 
                                             ∂ L/∂x1 = f1 + λg1 = 0 
                                            ∂ L/∂x2 = f2 + λg2 = 0 
                                            ∂L/∂λ = g(x1, x2) = 0 
Differentiating each of these equations with respect to x1, x2 and λ, we get the second-order 
partials, which can be arranged in matrix form as follows:  
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This matrix of second-order partial derivatives of the Lagrangean function is called the bordered 
Hessian. The second-order sufficient condition for a maximum in problems with two choice 

variables and one constraint is that the determinant of the above bordered Hessian, | H |, be 
strictly positive. As an exercise, you should check the second-order conditions for problem (ii) 
studied above. We will work through problem (i) for practice.  
 
Example (i) revisited: 
Consider example (i) above again. We had L(x1, x2, λ) = -(x1

2 + x2
2) + λ(1 - x1 - x2), so conditions 

(1) and (2) of Theorem 1 were 
                                     ∂L/∂x1 = -2x1 - λ = 0                                      (1) 
                                     ∂L/∂x2 = -2x2 - λ = 0                                      (2) 
                                      ∂L/∂λ = 1 - x1 - x2 = 0                                   (3) 
The critical values of x1, x2, and λ for the Lagrangean function are x1* = x2* = 1/2 and λ* = -1. 
The bordered Hessian in this case is 
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and |H | = [(0)(-2)(-2) + (-1)(0)(-1) + (-1)(0)(-1)] - [(-1)(-2)(-1) + (-1)(-1)(-2) + (0)(0)(0)] = 4 > 0, 
so the second-order conditions for a maximum are satisfied.  
 
Now consider a problem with three choice variables and one constraint. The problem can be 
expressed in terms of the Lagrangean function as follows: 
 
                                max

, , ,λ x x x1 2 3

 L(x1, x2, x3, λ) = f(x1, x2, x3) + λg(x1, x2, x3) 

 
By Theorem 1 above, the first-order conditions for a maximum are 
                                             ∂L/∂x1 = f1 + λg1 = 0 
                                            ∂L/∂x2 = f2 + λg2 = 0 
                                            ∂L/∂x3 = f3 + λg3 = 0 
                                            ∂L/∂λ = g(x1, x2, x3) = 0 
Differentiating each of these equations with respect to x1, x2, x3, and λ, putting the 16 resulting 
second-order partials into a matrix, we get the following bordered Hessian: 
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                             H  = 

0 1 2 3

1 11 11 12 12 13 13

2 21 21 22 22 23 23
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The second-order sufficient condition for a maximum in a problem with three choice variables 

and one constraint is that the third principal minor of H be strictly positive, and that the 

fourth principal minor (which is just the determinant  | H |) be strictly negative. 
 
Example: Find the extreme point of  
                                       y = f(x1, x2, x3) = x1

5x2
10x3

15 
subject to the constraint that 
                                          x1 + x2 + x3  = 6 
and confirm that it is a maximum. (Hint: the determinant of the bordered Hessian of the 
Lagrangean function for this problem is negative). 
Solution: The problem can be made easier to solve by taking the natural logarithm of the 
objective function. This does not affect the results in any way. The Lagrangean is 
                  L(x1, x2, x3, λ) = 5logx1 + 10logx2 + 15logx3 + λ(6 - x1 - x2 - x3) 
First-order conditions for a maximum are 
                                             ∂L/∂x1 = 5/x1 - λ = 0                 (1) 
                                            ∂L/∂x2 = 10/x2 - λ = 0                (2) 
                                            ∂L/∂x3 = 15/x3 - λ = 0                (3) 
                                          ∂L/∂λ = 6 - x1 - x2 - x3 = 0            (4) 
From (1), we get that                x1 = 5/λ                                  (5) 
From (2) we get that                 x2 = 10/λ                                (6) 
From (3) we get that                 x3 = 15/λ                                (7) 
Substituting these results into (4) we get 
                                     6 - 5/λ - 10/λ - 15/λ = 0 or  
                                                       6 - 30/λ = 0       ⇒ λ* = 5 
Substituting this result into (5), (6) and (7) gives x1* = 1, x2* = 2, x3* = 3. The value of the 
objective function at this point is (1)5(2)10(3)15 = 14, 349, 931. The bordered Hessian is 

                                    H  = 

0 1 1 1

1 1 0 0

1 0 1 2 0

1 0 0 1 3

− − −
− −
− −
− −









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/

/

 

We are told that |H | < 0, so we only have to confirm that the third principal minor is positive. 
The third principal minor is  

                              

0 1 1

1 1 0

1 0 1 2

− −
− −
− − /

 = [0 + 0 + 0] - [-1 - 1/2] = 3/2 > 0 

Since this is strictly positive, the extreme point is a maximum. 
 
Finally, consider a general problem with three choice variables and two constraints. Letting g and 
h denote the two constraint functions, the problem can be expressed in terms of the Lagrangean 
function as follows: 
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              max

, , ,λ λ1 1 2 3, 2 x x x
 L(x1, x2, x3, λ) = f(x1, x2, x3) + λ1g(x1, x2, x3) + λ2h(x1, x2, x3) 

 
The first-order conditions for a maximum are 
                                             ∂L/∂x1 = f1 + λ1g1 + λ2h1 = 0 
                                            ∂L/∂x2 = f2 + λ1g2 + λ2h2 = 0 
                                            ∂L/∂x3 = f3 + λ1g3 + λ2h3 = 0 
                                            ∂L/∂λ1 = g(x1, x2, x3) = 0 
                                            ∂L/∂λ2 = h(x1, x2, x3) = 0 
Differentiating each of these equations with respect to x1, x2, x3, λ1 and λ2, and putting the 25 
resulting second-order partials into a matrix, we get the following bordered Hessian: 
                                    

                                    H  = 

0 0

0 0
1 2 3

1 2 3

1 1 11 12 13

2 2 21 22 23

3 3 31 32 33

g g g

h h h

g h L L L
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(For brevity, the notation Lij ≡ ∂2L/∂xi∂xj is used above). The second-order sufficient condition 
for a maximum in a problem with three choice variables and two constraints is that the 

determinant of H , | H |, be strictly negative. Note that the determinant of H  in this case is the 

fifth principal minor of H . 
 
GENERAL RULE: PROBLEMS WITH n CHOICE VARIABLES AND m CONSTRAINTS 
The general rule, when the maximisation problem involves n choice variables and m 
constraints (m < n), is that starting with the minor of order (2m+1), the minors must alternate 
in sign, starting with sign (-1)m+1.   
 
You should verify that, in each of the examples discussed above, the second-order sufficient 
conditions are in accordance with this general rule. 
 
9.4. Interpretation of Lagrange multipliers 
By using a famous result called ‘the Envelope Theorem’ (which we do not have time to study in 
this course), it can be shown that each λλλλi* (ie. each Lagrange multiplier at the optimum) 
measures the increase in the objective function f made possible by a small relaxation of the 
corresponding constraint function. For example, in the case of the constrained utility 
maximisation problem faced by the consumer in microeconomic theory, λ* measures the increase 
in utility made possible by giving the consumer an additional unit of money (ie. by relaxing the 
budget constraint slightly). 
 
9.5. What you must do before the second in-class exam next week (Thursday, 18th 
December) 
Please attempt the constrained optimisation problems on the attached assignment sheet for 
Lecture 9. Learn the procedure for solving problems of this specific type (ie. take the natural 
logarithm of the objective function, form the Lagrangean, use the first-order conditions to solve 
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for x1, x2, x3 in terms of λ, etc.). You will face a very similar problem in your exam. Since we 
will not have time to go over these problems in a seminar, handwritten solutions are attached.  
 

 
 

(End of Lecture 9) 
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Assignment for Lecture 9. Constrained optimisation 
 

Question 1 
Find the extreme point of  
                                       y = f(x1, x2, x3) = x1

3x2
2x3 

subject to the constraint that 
                                          x1 + x2 + x3  = 2 
and confirm that it is a maximum. (Hint: the determinant of the bordered Hessian of the 
Lagrangean function for this problem is negative). 
 
Question 2 
Find the extreme point of  
                                       y = f(x1, x2, x3) = x1

4x2
8x3

12 
subject to the constraint that 
                                          x1 + x2 + x3  = 6 
and confirm that it is a maximum. (Hint: the determinant of the bordered Hessian of the 
Lagrangean function for this problem is negative). 
 
Question 3 
Find the extreme point of  
                                       y = f(x1, x2, x3) = x1

9x2
6x3

3 
subject to the constraint that 
                                          x1 + x2 + x3  = 6 
and confirm that it is a maximum. (Hint: the determinant of the bordered Hessian of the 
Lagrangean function for this problem is negative). 
 
 


