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Lecture 10. Essential statistical concepts (Part 1)

10.1. Introduction
This lecture is intended to cover all the basic statistical concepts vou will need for the remainder of
the QMII course. There are hundreds of basic statistics books vou could use to supplement these
notes if you wanted to. but you will not need to go into any greater detail for the purposes of this
course. The following topics are covered:
Part 1. Section 10.2. Random variables and probabilitics.
Section 10.3, The expected valuc of a random variable.
Section 10.4, The variance of a random variable.
Part 2. Section 10.5. The normal distribution.
Section 10.6. The covariance between two random variables.
Section 10.7.  The correlation between two random variables.
Section 10.8. Estimation.
Section 10.9. Unbiasedness.
Section 10.10. Efficiency.
Section 10.11. Consistency.
We will do Part 1 in the seminar, and Part 2 in the main lecture on Tuesday.

10.2. Random variables and probabilities
Recall that a ‘variable” is something whose magnitude can change 1.¢. something that can take on

different values. For example, the calendar year is a variable quantity. because it changes every
time the earth completes an orbit around the sun. It is called a dererministic variable because the
values 1t can take on are predetermined e.g. after the carth completes its current orbit it will be
2000, after the next one it will be 2001, ete. By contrast, a random variable is a variable whose
values cannot be predicted with certainty before they actually occur. For cxample. the highest
temperature in Britain tomorrow is a random variable, because we cannot know for certain what it
is gomg to be before it happens! Al we know about a random variable are the types of values
that can occur, and the probabilities which particular values or sets of values have of
occurring. Over time, particular values or sets of values of a random variable will be seen to occur
more or less often depending on how probable theyv are compared to others. The more probable they
are, the more often they will occur; the less probable they are, the less often they will occur. For
example. it is not impossible that tomorrow the highest temperature in Britain will lic between -60
degrees Celsius and -30 degrees Celsius, but at this time of vear it is more probable that the highest
temperature will be somewhere between 0 degrees Celsius and 15 degrees Celsius. Since this is the
most probable range of temperatures for this time of year. this is the set of values that will be seen
to have occurred most often at this time over the last 500 vears, say,

For our course, we must distinguish between two types of random vanable: discrete and
continuous.

A random variable is discrete if all its possible values can be identified as distinct points on the
real line E'. This means that there are some numbers on the real line that cannot be values of the
random variable (e.g. the numbers between any two neighbouring. but distinct. points on the real
ling). The classic example of a discrete random variable is the score when a dice 1s thrown. We can
use X to denote the random variable i.e. X = the score when a dice is thrown. and we can use x;=1.
X2=2, X3=3, x:=4, X5=3, Xs=6 to denote the possible values of X. Each of the six valucs can be
identified as a distinct point on the real line:
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In this case, X is clearly a random variable. because we cannot know for certain what its value is
going to be before we throw the dice. All we know is that the value will be an element of the set {1,
2.3.4. 5.6}, and that each of thesc valucs has a “one-in-six chance” of occurring. This is another
way of saying that cach of the values of X has a probability equal to 1/6 of occurring. which we
write as Prob(X=x;)=1/6, Prob(X=x;)=1/6, Prob(X=x:)=1/6, Prob(X=x.)=1/6, Prob(X=x:)=1/6.
Prob(X=x:) = 1/6. As vou should alrcady know from vour previous studies. the sum of the
probabilities of all the values of a random variable must equal 1.

The probability distribution of a random variable is a representation of the probabilities for all
the possible values. This representation can be algebraic (i.e. by means of a formula), or graphic
(i.e. by means of a diagram). or rabuiar (i.e. in a table). For example, here is the probability
distribution of the random variable X in the dice example. in tabular form:

Probability distribution of the random variable X=the score when
a dice is thrown

Values of the random variable X Probabilities
X< 1 pTOb(X=.\i]) = 1/6
Xa= 2 PTOb{X=N:) = 1/6
X:=3 Prob(X=x;) = 1/6
X =4 Prob(X=x,) = 1/6
Xs=35 Prob(X=x<) = 1/6
Xs=6 Prob(X=x¢) = 1/6

Here is the same distribution in graphical form:
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Finally, the distribution can be represented by means of a formula known as the probability
function, which in this case is written as px(x) = 1/6, for x=1, 2, 3, 4, 5, 6. The probability
function is simply a rule that takes you from each possible value of a random variable, to the
corresponding probability of that value.

In the dice example, the random variable X is not only discrete. but also finite, because we can list
out all of its values i.e. {x;=1, x;=2., xs=3. X:=4, xs=53, xs=6}. An cxample of an infinite discrete
random variable is the number of throws of a coin needed before a head first appears. The possible
outcomes are I, 2, 3, .... These values can be identified as distinct points on the real line, and a
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probability can be assigned to each, but vou could never list them @/l out. because the list goes on
for ever. Thus, the random variable is discrete, but also infinite. Here are some other examples of
discrete random variables:

1. The number of fatal car accidents in a city in a given month.

2. The number of customers arriving at a check-out counter in an hour,

3. The number of errors detected in a company’s accounts.

4. The number of claims on a medical insurance policy in a particular vear.

A random variable is continuous if its possible values cannot be identified as distinct points on
the real line E'. In other words, a random variable is continuous if it can take any value in some
subsct of the real line. In other words again, there is no number in that subset of the real line that
cannot be a value of the random variable. For example. the highest temperature in Britain
fomorrow is a continuous random variable, because it can take any value along a continuum,
Another example is the height of the tallest person in the room. A crucial difference between
continuous and discrete random variables is that, for continuous random variables, we cannot
attach probabilities to specific values. We cannot do this because of the way we have defined
continuous random variables. In order to be able to assign probabilities to specific values of a
continuous random variable. we would have to be able to identify the values as distinet points on
the real line. which is impossible because of the way we have defined continuous random variables
above! All we can do with continuous random variables is assign probabilities to ranges of
values. For example, let us denote the highest temperature in Britain tomorrow (a random
variable) by the letter Y. Thus
Y = the highest temperature in Britain tomorrow

Now, Y can take on any value along the real line between -273.15 degrees Celsius (absoulte zero)
and +o
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We say that Prob(Y = 10 degrees Celsius) = 0, for example. because 10 is a specific point on the
real line. The same applics to any specific value of Y in the range of possible values along the real
line. All we can do is make statements like Prob(0 degrees Celsius <Y < |5 degrees Celsius) =
0.8. which says ‘the probability that Y will be somewhere between 0 degrees Celsius and 135
degrees Celsius is 0.8 . Here arc some other examples of continuous random variables:

1. The percentage of impurity in a batch of chemicals.

. The time that elapses between a person’s birth and that person’s death.

. Annual rainfall in a particular city.

. Your weight at 12.0lam on Ist January each year.

. The change in the price of an ounce of gold in a month.

o
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The distinction we have made between discrete and continuous random variables may appear a bit
artificial. After all, we very rarely measurc things on a continuum. For example. the highest
temperature in Britain tomorrow cannot be reported more precisely than the measurement
instrument allows. However. when measurements can be made on such a fine scale that differences
between adjacent values are of no significance, it is convenient to act as if they had truly been



EC2203 QUANTITATIVE METHODS IN ECONOMICS II (1998-1999) @

made on a continuum. For example, the difference between a highest temperature in Britain
tomorrow of 10.3425 and 10.3426 1s of verv little significance. and the attachment of probabilities
to each would be rather pointless.

For practical purposes, then, we treat as discrete all random variables for which probability
statements about the individual possible outcomes have worthwhile meaning; all other random
variables are treated as continuous.

It would obviously be impossible to display the probability distribution of a continuous random
variable in tabular form, because there are an infinite number of possible values. and each specific
value has zero probability. Instead. what we do is represent the probability distribution graphically
and algebraically. Let us illustrate this with the example of the highest temperature in Britain
tomorrow, this time measured in degrees Fahrenheit instead of Celsius (just to be awkward!). For
the sake of argument, we will assume that this varies within the limits of 55 and 75°F, and initially
we will suppose that it is equally likely to be anywhere within this range. Since all temperatures
from 55 to 75° are equally likely, the probability is represented as being spread out uniformly. as in
the diagram below:
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We must always assume that the probability is spread to cover an area equal to 1. This is
because the total probability associated with the values of a random variable is always equal to 1.
In this case. the probability has been spread to form a rectangle. and since the length of the
rectangle is equal to 20, its height is given by the formula for the arca of a rectangle
20xheight = 1 = height = 1/20 = 0.05

(recall that lengthxheight = area). Having found the height. we can now answer such questions as:
‘what is the probability that the highest temperature in Britain tomorrow lies somewhere between
65 and 70°F ?°. The answer is given by the amount of probability lying between 65 and 75°F,
which is the shaded area in the diagram below:

Area = pm&bil.\.b:‘?- J“;
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The base of the shaded area is 5. and its height is 0.05, so the area is 0.25. The probability is 1/4.
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The height of the graph at any point represents what is formally called the probability density at
that point, and if the height can be written as a function of the random variable. it is known as the
probability density function. In this case, the probability density function is given by f{y). where v
is the temperature, and

n

fly)=0.05 for 35<sy=7
We say that fly) =0 for v< 35 ory > 75,

You should know from your previous studies that the area under the graph of a function between
two points on the horizontal axis is given by the definite integral of the function, where the two
limits of integration are the two points on the horizontal axis (actually, this is only true if the value
of the function is never negative - which it never is for a probability density function). Thus. the
probability above could have been calculated using the probability density function by integrating
it as follows:

70 m 70
Prob(65 < y < 70) = j' f(y)dy = J‘(o.05)dy = (0.05) j’ dy = (0.05)(70 - 65) = 0.25

65

The probability distribution drawn above is the simplest continuous distribution, known for
obvious reasons as the uniform distribution. The continuous distribution you will meet most often
in econometrics is the normal distribution, to which we will turn after considering the concepts of
expectation and variance.

10.3. The expected value of a random variable
The expected value of a random variable is just a weighted sum of all its possible values, where the

weights are the probabilitics of the values. It is best to consider the case of discrete random
variables first. and then extend the discussion to continuous random variables.

Consider a discrete random variable X that can take on n particular values x;, Xz, . . ., X, with
probabilitics p;. ps. . . .. p, respectively. Then the expected value of X. denoted by E[X], is given
by
EIX] =pixi + psa++ -+ Pp%a= D X,P,

In words, the expected value of a discrete random variable is the weighted sum of all its
possible values, taking the probability of each value as its weight. For a concrete example,
suppose X = the score when a dice is thrown. This random variable has six possible values: {x;=1.
X2=2. X5=3. xs=4, xs=3. xs=6}. Each of these values has a probability of 1/6, so the expected value
of X is defined as

E[X] = (1)(1/6) = (2)(1/6) + (3)(1/6) + (4)(1/6) + (5)(1/6) = (6)(1/6) = 3.3
Notice that the expected value of X in this particular example is a number you could not obtain at
all, although this need not be the case with other random variables. The expected value of a random
variable is frequently described as its population mean, denoted by the Greek letter p.

Now consider the case of continuous random variables. Remember that we cannot attach
probabilities to specific values of a continuous random variable. In order to define the expected
value, therefore, we use the probability density function. Thus, suppose a random variable Y can
take on any value between a and b, where a and b are points on the real line such that a < b.
Further suppose that the probability density function of Y is f(y) for a <y < b. and zero otherwisc.
(Recall that a probability density function evaluated at any particular value y gives the height of
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the graph which describes the distribution of probabilities for a continuous random variable). Then
the expected value of Y is defined as

b
E[Y] = | yf(y)dy

This is actually very similar to the definition of the expected value of a discrete random vanable. In
both cases, the different possible values of the random variable are weighted by some measure of
the probability attached to them. In the case of a discrete random variable, the summation 1s done
on a value by value basis, with each value weighted by its probability. In the continuous case,
integration replaces summation, and the probability density function f(v) replaces the individual
probabilities for each value in the discrete case. However. the principle is exactly the same. Nore:
you will never be asked to find the expected value of a continuous random variable by
integration in this course. We will refer to the expected value of any given random variable Z,
say, as E[Z], irrespective of whether it is continuous or discrete. Exactly the same rules and
principles apply to each, so we do not have to distinguish between them. However. just to give
vou an idea of how you find the expected value of a continuous random variable. consider the
simple example considered in the previous section, where Y = the highest temperature in Britain
tomorrow, and the density function is f{y) = 0.05 for 55 < v < 75, and f{v) = 0 otherwise. Then.
using the elementary rules of integration (which vou should know!) we get
b 75 75
E[Y] = j yi(y)dy = j' y(0.05)dy = (0.05) j ydy = (0.05)(75° - 55%)/2 = 65

3

There are three rules for manipulating expected values of random variables which vou must leam.
They are easy to prove, but I will not do it here. They apply to any random variables. irrespective
of whether thev are continuous or discrete:

Rule 1. The expected value of a sum of random variables is equal to the sum of their expected
values. For example, if you have three random variables X, Y, and Z, then
E[X+Y+Z] = E[X] + E[Y] +E[Z]

Rule 2. If you multiply a random variable by a constant, you multiply its expected value by the
same constant. For example, if X is a random variable and a is a constant, then
ElaX] = aE[X]

Rule 3. The expected value of a constant is that constant. For example, if a is a constant, then
Efaj=a

Putting these three rules together. vou can simplify more complicated expressions. For example.
suppose vou wish to work out E[Y], where Y = a+bX, and a and b are constants. Then using the
three rules above, E[Y] =a + bE[X].

There are two more things to note. First, suppose that X is a random variable, and that g(X) is
some function of X. Then the expected value of g(X) is just

E[2(X)] = g(x)p1 + g(x2)pz + - - - = Zg(x,)p.
if the random variable X is discrete, or

Elg(¥)] = [ g(x)f(x)dx
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if the random variable X is continuous and has a densitv function f{x). In words, to find the
expected value of g(X). you just treat the values of g as if they were the values of the random
variable itself.

Second, suppose you have two random variables X and Y. These are said to be independent if
E[f(X)g(Y)] = E[fX)]E[g(Y)]
for any functions f(X) and g(Y). As an important special case. independence implies that
E[XY] = E[X]E[Y]
In words, ‘the expected value of the product equals the product of the expected values’.

10.4. The variance of a random variable

The variance of a random variable is a measure of the “dispersion” of its probability distribution
around the mean i.c. how “spread out™ the probability distribution is around the expected value of
the random variable concerned. The variance of a random variable X, denoted by V[X], is
defined as the expected value of the square of the difference between X and its mean i.e. the
expected value of (X-E[X])° = (X-p)’. It is also denoted by the Greek symbol oy’
So suppose that X is a discrete random variable with values x;. x:. . . .. and probabilities p;. pa. . .
.. and with expected value E[X] = . Then '

V[X] = 05 = E[(X-1)°] = (xi-0)’py + (=) p2 + - -+ = Zx-p)'p:
Similarly, suppose that X is a continuous random variable with density function f{x) and mean u.
Then

VIX] = 0 = E[(X407] = [ (x =) f(x)dx

As a concrete example, consider the simple random variable X = the score when a dice is thrown.
We saw carlier that E[X] = u = 3.5. Then
VIX] = 0" = (1-3.3)%(1/6) + (2-3.5)(1/6) + (3-3.5)°(1/6) + (4-3.5)°(1/6) + (5-3.5)°(1/6)
+(6-3.5)°(1/6) = 2.92
Another very important indicator of the dispersion of the probability distribution of a random
variable is the standard deviation. The standard deviation of a random variable X is defined as
the square root of its variance, denoted by oy Thus oy = WX] = vo,’. In the simple case
where X = the score when a dice is thrown, the standard deviation of the probability distribution of
Xisv2.92=17L

Using the three rules for manipulating expected values given in the last section, it is ¢asy to show
that

V[X] = ox = E[(X-p)] = E[X] -’
I shall prove this here because it is useful. Remembering that E[X] = , and that w is a constant,
we have
V[X] = oy = E[(X-p)’] = E[X"-2uX+p’] = E[XT}-20E[X]+u" = E[X"]-2p™+p” = E[X7]-w".

(End of Lecture 10 Part 1)
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10.5. The normal distribution
In Part 1 of Lecture 10. we briefly discussed random variables and probabilities. and the concepts

of ‘expected value’ and “variance’. We saw that there are various ways in which to represent the
distribution of probability between the possible values of a random variable. The method that
applies to all random variables (whether discrete or continuous) is the algebraic method. in which a
formula is used to describe how the probability is ‘spread out” over the real line E'. In the case of
discrete random variables. the formula is called the probabilitv function or the probability_mass
function. In the continuous case, the formula is called the probabilitv density function.

Here are some examples of probability mass functions for various kinds of discrete random
vanable (vou do not have to leamn these!):
(1). The discrete uniform distribution
This is the distribution of the simple random variable we looked at in the last lecture: the score
when a dice is thrown. More generally. let X be a finite discrete random variable which can take
any one of N values in the set {1, 2, . . .. N}. Then the probability mass function of X is

px(x) = I/N forx=1.2....N

px(x)=0 otherwise
(2). The Bernoulli distribution
This applies to discrete random variables which can only take one of two values: either 0 or 1. For
example, suppose X takes the value 1 when vou toss a coin and get a head. and X takes the value 0
when you toss a coin and get a tail. Then X is a random variable with a Bernoulli distribution.
More generally, let X be a finite discrete random variable which takes the value 1 with probability
p. and the value 0 with probability (1-p). Then the probability mass function of X is

px(x) =pY(l-p)™ forx=0,1

px(x)=0 otherwise
(3). The geometric distribution
This is the distribution of the second example of a discrete random variable we looked at in the last
lecture i.e. the number of coin tosses before a head is obtained. More generally. suppose X counts
the number of “trials” of an experiment (e.g. coin tosses) before a “success’ occurs (e.g. getting a
head), where the probability of a success is p. and the probability of a failure is (1-p). Then the
probability mass function of X is

pxix) = p(1-p)* forx=0.1.2.3.

px(x) =0 otherwise
(4). The binomial distribution
This is the distribution of the random variable which counts the number of “successes’ (e.g. heads)
in a specified number of ‘trials” (¢.g. 3 coin tosses). So suppose we are considering a sequence of
N trials, each of which has two possible outcomes: “success’ (probability = p) or ‘failure’
(probability = 1-p). Let X be the random variable which counts the number of successes in the N
trials. Then the probability mass function of X is

px(x) = C& pi(1-p)™™ forx=0.1,2,....N

px(x) =10 otherwise
where C,~ = NI/{x!(N-x)'}, and where ! is the *factorial” symbol eg. N!=N(N-1)(N-2) - - - L.

Remember: The above are just “algebraic’ ways of describing how the probability is “spread out’
between all the possible values of the random variable concerned. In a similar way, we can write
down many examples of probability density functions for various kinds of continuous random
variable. Here are a few:
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(1). The continuous uniform distribution
This 1s the distribution we met in the last lecture (sometimes called the “rectangular” distribution).

when we assumed that the highest temperature in Britain tomorrow was equally likely to be
anvwhere between 53°F and 75°F. More generally. suppose that a random variable Y takes values
within the limits of a and b on the real linc1.¢. a <Y < b. and suppose that the probability mass Is
spread uniformly over this interval. Then the density function of Y is

fy(y) = 1/(b-a) fora<y<b

fy(y)=0 otherwise
(2). The exponential distribution with parameter A
This distribution is typically associated with random variables which measure the “length of life” or
“time to failure’ of various devices and systems (including us!). You will come across it if you do
anvthing related to “survival analysis’ in your dissertation next year. Suppose Y is a nonnegative
random variable i.e. Y = 0 which measures the length of time until a new device “fails™. Y has the
exponential distribution with parameter . if its density function is

fy(v) = Ae™ forvz0

fy(v)=0 otherwise
where ¢ 1s the physical constant e = 2.71828....
(3). The Weibull distribution with parameters o, 2. and v
This is a generalisation of the exponential distribution. A nonnegative random variable Y has the
Weibull distribution with parameters c. 2. and v if its density function is of the form

f(v) = ah(y-v)* '™ forv-vz0

fu(y)=0 otherwise

In the rest of this section. we will focus on one continuous distribution vou will keep coming across
again and again in econometrics, namely the normal distribution (so-called because many random
variables in ‘nature” happen to be distributed approximately like this. so it is the “normal” thing to
find!). Let X be a normally distributed (continuous) random variable. with mean E[X] = w. and
variance V[X] = 6x". where -c <p <= and 0 < c_\-é < oo, Then the probability density function of
X is of the following form:

a )

-7
f

fx(xl L, Ux) = =
\{2”0': X

where x can be any number on the real line. and where w is the physical constant 7 = 3.14159....
Remember. all this is doing is telling vou how the probability is distributed between the possible

values of X. If vou plot the graph of fi(x: u. ox). it is bell-shaped:
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So the probability density function fi(x: i, ox) is telling vou that the probability is distributed in a
symmetric bell shape over all the possible values of X. The tallest part of the bell (i.c. the greatest
probability density) is directly over the mean u of the random variable. The variance oy tells vou
how ‘spread out’ the bell 1s around this mean. The bigger the variance. the lower is the density at
the mean, and the more spread out 1s the bell shape. Remember: as in the simple example of the
previous lecture, the area under the bell-shaped graph must always equal 1, because the total
probability associated with the values of a random variable must be exactly 1.

Laloe;m, 62)

o
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When a random variable is normally distributed with 2 mean u and variance oy, it is customary to
write this as X~N(u. ox”). We shall now consider how to find the probability that the value of X
lies between two numbers a and b on the real line 1.¢. Prob(a < X < b). We begin by introducing the
concept of the cumulative distribution function. If X~N(p. o). then the cumulative distribution
function of X. denoted by Fx(c). is

Fx(c) = Prob(X =¢) = J fr(x: u. ox) dx
This is the area under the probability density function to the left of ¢, as shown in the diagram:
. A
Ex ey i 6x) Area = Fy (c)
= Prob (X € ¢)

PP eEmsar—ana o

- ‘
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This area is the total probability *mass” under the curve to the left of point ¢ on the horizontal axis.
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Notice that since the total area under the curve i1s 1, we must have Fx(=c) = 1. After a moment's
thought. vou should be able to see that the probability Prob(a < X < b) can be expressed in terms
of the cumulative distribution function as follows:

Prob(a < X <b) = Fx(b) - Fx(a)
This is the area under the graph of the density function fy(x: p. ox) between the points a and b on
the horizontal axis:

: A
fx (23 ) 6x ) Area = Fx (b) - F (o)
l q = Prob (a < X< L)
a i b X

In theory. any required probability can be obtained from the cumulative distribution function in this
way. However, problems arise in practice because the integral in the formula for Fx(c) above is
tricky to compute. Furthermore, there are many random variables which are normally distributed.
but they do not all have the same mean and variance. Since the density function fx(x: p, ox)
depends on these two parameters, cach normally distributed variable has a different density
function and a different cumulative distribution function! In order to avoid having to do a new
integration every time we come across a normally distributed variable (which happens a lot!).
mathematicians have tabulated various areas under the normal curve for something called a
standard normal random variable, usually denoted by Z. which has mean zero and a variance of |
i.e. Z~N(0. 1). Fortunately, probabilities for any normal distribution can always be expressed in
terms of probabilities for the standard normal variable. because for any X such that X~N(u. ox).
we have
X=u

Ox
If vou subtract the mean from a normal random variable. and divide the whole thing by the
standard deviation, vou end up with a standard normal variable with mean zero and variance 1! It
follows immediately that

=

i X b- 3 22
Prob(a<)(<l>)=Prob(a - % 'u)=Prob(a 'u<2<b H
Cx Ox Cx Ox Sy
There is some conventional notation associated with the standard normal variable. Its probability
density function is denoted by ¢(z). and is of the form

o

Its cumulative distribution function is denoted by ®(c). where

)

(z) =

27

®(c)=Prob(Z =c¢c) = J d(z)dz
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For any normal random variable X~N(u, ox’), we can find probabilities such as Prob(a < X < b)
using the cumulative distribution function of the standard normal variable as follows:

PR Rl = P B DB D A 5 D

Gy Ox O« Gy Cx

Gx Gy

Given a ‘cutoff” point c. you will usually be able to look up the corresponding value ®(c) from a
table such as the following:

Values of the cumulative distribution function of the standard normal distribution

[+ ®(c) C ®(c) < ®(c)
0.0000 0.3000 1.8808 0.9700 2.3263 0.9900
0.2333 0.6000 1.8957 0.9710 2.3656 0.9910
0.5244 0,7000 1.9110 0.9720 2.4089 0.9920
0.8416 0,.8000 1.9268 0,9730 24573 0.9930
1.0364 0.8500 1.9431 0.9740 2.5121 (01,9940
1.2816 0.9000 1.9600 0.9750 2.5758 (1,9950
1.3408 0.9100 1.9774 0.9760 2.6521 (,9960
1.4051 (.9200 1.9954 0.9770 2.7478 (1,9970
1.4758 0.9300 2.0141 0.9780 2.8782 (,9980
1.5548 0.9400 2.0333 0.9790 3.0902 .9990
1.6449 0.9300 2.0537 0.9800 3.2905 0.9995
1.6646 0.9520 2.0749 0.9810 3.7190 0.9999
1.6849 0.9340 2.0969 0.9820 3.8906 0.999935
1.7060 0.9560 2.1201 0.9830 4.2649 0.99999
1.7279 0.9580 2.1444 0.9840 14172 0.999993
1.7507 0.9600 2.1701 0.9850 4.7534 0.999999
1.7744 0.9620 2.1973 (1.9860 4.8916 0.9999995
1.7991 (0.9640 2.2262 00,9870 5.1993 0.9999999
1.8250 0,9660 2.2571 0.9880 5.3267 0,99999995
1.8522 0.9680 2.2904 0.9890 36120 0.99999999

For example, according to this table we have Prob(Z < 1.7991) = ®(1.7991) = 0.9640 :

pz) 4 Brea = 3 (1-322)

___

(o]

\

- —
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As another example: Prob(Z > 1.8522) = | - Prob(Z < 1.8522) = 1 - 0.9680 = 0.032 :

>

¢plz)

Ares =1 = & (1.8522)
= 0032

re) 1-9%12 z.

Here is an example involving the transformation of a normal random variable into a standard
normal one. for the purposes of calculating probabilities:

Example: Suppose X~N(3. 9). Find Prob(11.2247 < X < 16.1570).
Solution: In this example. we have 1 =5 and oy = 9, so the standard deviation is ox = 3. So
112247 -5 » X-5 . 161570~ 5)

- - -

3 3 3
= Prob(2.0749 < Z <3.7190)

= @(3,7190) - ©(2.0749)

=0.9999 - 0.9810

=0.0189

Prob(11.2247 < X < 16.1570) = Prob(

Hopefully. you will have seen lots of these in your previous studies. so we shall leave it at that.
There are two more things I want vou to note about the standard normal distribution at this stage.
Firstly. since the normal curve is symmetric, we have

O(<) =1 - O(c)
For example, ®(-2.0141) = 1 - ®(2.0141) = 1 - 0.9780 = 0.022

g(z) 4

—-2.0014) ° 2. 014 z
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The second thing I want vou to note is that
Prob(-1.96 < Z < 1.96) = ®(1.96) - ®(-1.96) = ®(1.96) - {1 - ®(1.96)} = 0.9750 - 0,025 =095 :

AS% of grobakil
¢() r

Pl

L
~1-9¢ (o] 1494 =

So 95% of the probability mass for a standard normal random variable is contained between the
limits -1.96 and 1.96. Since Z = (X-p)/cy, we can rewrite this result as

Prob(-1.96 < (X-w)/ox < 1.96) = Prob(u - 1.960¢< X < u+ 1.960x) =095
In words, 95% of the probability mass for any normal variable X~N(u. ox’) is contained between
the limits p - 1.96cx and p + 1.960x.

10.6. The covariance between two random variables

In the last lecture, we reviewed the concept of the expected value of a random vanable. We saw
how we could also find the expected value of a function of a random variable. An important
application of the expectation of a function of random variables is to the covariance. Let X and Y
be any two random variables (either discrete or continuous), and let E[X] = ux and E[Y] = py.
Often. we would like some measure of the nature and strength of the relationship between two
variables such as these. This is difficult to achieve. because the variables could in principle be
related in any number of ways. To make things easier. we restrict our attention to the linear
association. For example. a high value of X might be associated on the average with a high value
of Y., and a low value of X with a low value of Y. in such a way that. to a good approximation. a
straight line might be drawn through the associated values when plotted on a graph. Consider the
product (X-ux)(Y-uy). If high values of X tend to be associated with high values of Y, and low
values of X with low values of Y, we would expect this product to be positive. and the stronger the
association, the larger the expectation of (X-ux)(Y-uv) :

(M-mv) 4 s ’
.. fPesitive covamoace
e
o'ak:" “‘0'
PR ..".
‘s ' 'l‘
\"' ‘5, * —
P B 5
- |."‘l“"; i ( x 'Mx)
'o’ = "o'l i
. :‘ F
._-'.‘(':'7
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By contrast, if high values of X are associated with low values of Y. and low values of X with high
values of Y. the expected value of the product (X-px)(Y-py) would be negative:

(1 -v)
-
Seeasle . aive covartonce
Brsere neg
P e "‘o
- L)
n ' et
. T
Teel,
t' v -
.' -
L B >
g R (X - px)
»"". FAR
"‘.‘o 3 0.'.
e fu, &
e e
PN e
a::"' c.}‘\
*
N "I.o-t.
Taas'e

An expectation of 0 for (X-px)(Y-uy) would imply the absence of a linear association between X

and Y:
(v-mv) 4
Ao tovanante
. :‘.: t::: L
"."’: :-.. - A ..‘...‘. LY
Vo't o e T 0 e
l,h ’0.‘ ‘s . ’;:‘ o
. . :'-p.": 7’
L, s :";",' ! (X = mx)
B N
= e ks = "

Thus. as a measure of the linear association between two random variables X and Y. we are led to
an examination of the expected value of (X-ux)(Y-uy). The expected value of (X-p)(Y-p1) is
called the covariance between X and Y, denoted by Cov[X, Y}, or by the Greek symbol oyy . For

discrete random vanables.

Cov[X. Y] = E[(X-p)(Y-uy)] = ZE(x: = )y - By)Pry(Xi v)
where Pyy(x,. vi) = Prob(X = x, and Y = y,). For continuous random variables. we replace
summation by integration, and we replace the (bivariate) probability by the (bivariate) density':
Cov[X. Y] = E[(X-u)(Y-p)] = [[ (xrm(y-p)fics(x, v)dxdy
To fix ideas. consider the following simple example. Let X and Y be a pair of discrete random

variables measuring, respectively. a consumer’s satisfaction with food shops in a particular town,
and the number of vears of residence in that town. Suppose that X can take values 1. 2. 3, or 4,
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ranging from low to high satisfaction levels. and Y takes the value 1 if the consumer has lived in
the town less than six years, and 2 otherwise. The table below shows the eight joint probabilities
for X and Y:

Probabilities for consumer satisfaction (X) and time in residence (Y)

28 X
1 2 3 4 Totals
1 0.04 0,14 0,23 0.07 0.48
2 0.07 0,17 0.23 0.05 0.52
Totals 0.11 0.31 0.46 0.12 1.00

For example, according to the table, Pxy(2. 1) = Prob(X =2. Y = 1) = 0.14. and Pxy(3. 1) = 0.23.
The first step in finding the covariance between X and Y 1s to find their means:

E[X] = ux = (1)0.11) = (2)(0.31) + (3)(0.46) + (4)(0.12) = 2.59

E[Y] = py = (1)(0.48) + (2)(0.52) = 1.52

Then the covariance is given by

Cov[X. Y] = E[(X-px)(Y-py)] = ZZ(X; = (¥ = By)Pxy(xi. vi)

= (1-2.39)(1-1.52){0.04) = (1-2.59)(2-1.52)(0.07) + (2-2.39)(1-1.52)(0.14)
+(2-2.59)(2-1.32)(0.17) + (3-2.59)(1-1.52)(0.23) + (3-2.59)(2-1.52)(0.23)
+ (4-2.59)(1-1.52)(0.07) + (4-2.59)(2-1.52)(0.03) = 0.0

This calculation could have been made casier by using the fact that
Cov[X, Y] = E[(X-px)(Y-uy)] = E[XY] - pxpuy

To prove that we get the same result. note that

E[XY] = £Exy, Pyx(x,, vi) = (1)(1)(0.04) + (1)(2)(0.07) + (2)(1)(0.14) + (2)(2)(0.17)
+(3)IN0.23) + (3N2N0.23) = ()1 K0.07) = (4)(2)(0.05) = 3.89

Thus Cov[X. Y] = E[(X-px)(Y-uy)] = E[XY] - uxpy = 3.89 - (2.59)(1.52) =-0.05

This negative value for the covariance indicates some tendency for high values of consumer
satisfaction to be associated with a low period of time in residence in the town L.e. a negative
association between this pair of random variables.

There are three rules for manipulating covariances which vou must leam;

(1). If Y=U+V, then Cov[X, Y] = Cov[X, U] + Cov[X, V]
(2). If Y =aZ, where a is a constant, then Cov{X, Y] = aCov{X, Z]
(3). If Y = a, where a is a constant, then Cov{X, Y] =0

10.7. The correlation between two random variables

We saw in the previous section that the covariance between two random variables is one possible
measure of the nature and strength of the linear association between them. However. it is not as
good an indicator of the strength of the linear association as it might be, because 1t is affected by
the scales in which the variables are measured. For example, if X and Y are random variables
measuring the returns from two shares, we get a much smaller value for Cov[X. Y] if we measure
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the returns in pounds rather than pence. Since the scale of measurement is totally arbitrary, we
would ideally like a pure, scale-free measure of the linear association between X and Y. Such a
measure can easily be obtained by dividing the covariance by the product of the individual standard
deviations. The resulting quantity is called the correlation coefficient.

Let X and Y be a pair of random variables, with means py and py, and variances o and oy,
A measure of the strength of their linear association is provided by the correlation coefficient
p, which is defined as p = Cov[X, Y)/o\ ov. Itis also denoted by the symbol Corr[X, Y].

It can be shown that the correlation coefficient must lie between -1 and 1. That is
Al<psl
and the values have the following interpretations:
(1). A correlation of -1 implies perfect negative linear association.
(2). A correlation of 1 implies perfect positive linear association.
(3). A correlation of 0 implies no linear association.
(4). The larger the absolute value of the correlation, the stronger the linear association between the
random variables.

Here are some plots of various values of two hypothetical random variables. with the correlation
coefficient they would give rise to:
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To finish off this section. let us calculate the correlation between the variables X and Y in the
example of the last section. We found that the covariance between X and Y 1s Cov[X, Y| =-0.05.

To find the correlation, we need the two vanances o~ and o~ These are

V[X] = E[(X- -1x)’] = Z(x-u) Palx) = (1-2. 39) (0.11) + (2-2.59)°(0.31) + (3-2.59)(0.46)
+ (4-2.59) (0 12)=0.7019

VY] = E[(Y-py)’] = Z(vi-uy) Py(y,) = (1-1.52)7(0.48) + (2-1. 52)°(0.52) = 0.2496

Therefore Corr[X, Y] = Cov[X. Y)/oxoy = -0.05/(N0.7019)(N0.2496) = -0.1195

10.8. Estimation
So far, we have assumed that we have exact information about the random variables under

discussion, in particular that we know the probability mass function in the case of a discrete
random variable, or the probability density function in the case of a continuous random variable.
With this information, it is possible to work out the population mean and variance. and any other
population characteristics we might be interested in. In real life, however. we usually do not know
the exact probability mass function or density function. It follows that we do not know the
population mean or variance. However. we would like to obtain an estimate of them.

The basic procedure is always the same. You take a sample of N observations, and derive an
estimate of the population characteristic using some appropriate formula. The formula is called
an estimator. The actual number vou get when vou apply an estimator to data is the ¢stimate. Be
sure to carefully distinguish between estimators and estimates: the estimator is a general rule or
formula, whereas the estimate is a specific number that will vary from sample to sample. The
following are the usual estimators of the two most important population characteristics of a single
random vanable:

# |

1&
_ﬁz

Estimator of the population variance ox™; = —z (x, - X)°

Estimator of the population mean w:

Note that these are the usual estimators of the population mean and variance, They are not the only
ones. The following are the usual estimators of the covariance between two random variables X
and Y. and the correlation between them (it is assumed that there are N observations on the two
variables):

Estimator of the covariance oxy: Sxy = ﬁz (x; — x)(w - y

Estimator of the correlation coefficient p: I = Sxy/SxSy
The important thing to realise is that there are many possible alternative estimators for the

population parameters above. The reason we use the above estimators is that they are the ‘best”
according to two very important criteria: unbiasedness and efficiency.
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10.9. Unbiasedness
An estimator is a special case of a random variable. This 1s because it is a combination of the

values of X in a sample, and. since X is a random variable. a combination of a set of its values
must also be a random varniable. For example, take X , the estimator of the mean:

X = (IN)x; %0+ - - -+ x)
Suppose X has a normal distribution, with mean ux and variance oy, The diagram below shows
the probability density functions for X and X :

—
-

densiliy
p 4

A i e ——

>

Y

; -
*
x|

Mz X

You will see that the distributions of both X and X are centered over wy, the population mean. The
difference between them is that the distribution of X is narrower and taller, so that x 1s likely to

be closer to ux than a single observation on X. This is because x ‘averages out’ the random errors
associated with specific values of X in estimating uy Similarly, sx”, the estimator of the population
variance of X. is also a random variable.

Since estimators are random variables, it follows that only by coincidence will an estimate be
exactly equal to the population characteristic. Usually. there will be some degree of error. Although
we must accept this, we would like an estimator that is accurate on average, Technically, we want
the expected value of the estimator to be equal to the population characteristic. If this is true. the
estimator 1s said to be unbiased. If it is not. the estimator is said to be biased, and the difference
between its expected value and its population characteristic is called the bias.

Consider the sample mean. It is easy to show that E[ ;] = ux. This is true because
e Tl e N
E = 2 E X - S Sy
[x] N Z [X.] N § Hx N Hx = Hy

where I have used X, to denote the ith observation of the random variable X. Thus. X is unbiased.
It can also be shown straightforwardly that Efsy’] = ox” . so that the sample variance sy” is an
unbiased estimator of " Similarly. the estimators of the covariance and correlation between two
random variables are also unbiased.
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10.10. Efficiency

Unbiasedness is one desirable feature of an estimator, but it is not the only one. Unbiasedness
means that ‘on average’, the estimator will tend to give a correct estimate of the population
characteristic. What we would also like 1s for the estmator to have as high a probability as
possible of giving a close estimate of the population characteristic, which means that we want its
probability density function to be as concentrated as possible around the true value. One way
of summarising this is to say that we want its variance to be as small as possible.

Suppose that we have two estimators of the population mean. calculated using the same
information, that they are both unbiased. and that their probability density functions are as shown
in the following diagram:
¢ robabilityy 4
AR - estmaker B

>
Il

M

Since the probability density function for the estimator B is more highly concentrated than that
for estimator A, it is more likely to give an accurate estimate. Technically, it is said to be more
efficient. Notice that the definition says ‘more likely". Even though estimator B is more efficient.
that does not mean that it will alwavs give the more accurate estimate. It just means that it has a
higher probability of producing an accurate estimate of the true mean.

We have said that we want the variance of an estimator to be as small as possible. and that the
most efficient estimator is the one with the smallest variance. We also said that we want the
estimator to be unbiased. These are two quite different criteria. and they sometimes conflict with
cach other. It sometimes happens that we can construct two estimators of a population
characteristic, one of which is unbiased (A in the diagram below), the other being biased but
having a smaller variance (B below):

(m’&\:a A i estimator A
Fansbian
biosed
es\'muk\l‘
A /Wlasul
o ]
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A 1s better than B in the sense that it is unbiased. but B is better than A in the sense that its
estimates are always close to the true value. How do you choose between them ? It will depend on
the circumstances. If vou are not bothered by errors. provided that on average they cancel out. then
vou should probably choose A. On the other hand, if you can tolerate small errors but not large
ones, vou should choose B.

10.11. Consistency

We shall continue to assume that we are investigating a random variable X with unknown mean uy
and unknown variance oy, and that we are using X to estimate uy. How does the accuracy of x
depend upon the number of observations N ?

Not surprisingly, the answer is that as you increase N, vou increase the probable accuracy of X.
This is because it can be shown that V[;] = oy /N. Thus, as N rises, the variance of the
probability distribution of x decreases. The bigger the sample, the smaller is the variance of the
probability distribution of x and so the more ‘tightly compressed’ it is around the true mean.

This is demonstrated in diagram (A) below for a hypothetical random variable X. As N increases.
the probability distribution becomes narrower and taller. If N becomes really large. the probability
distribution will be like a vertical line located at X = uy. This is because in the limit. as N goes to
infinity, ox-/N tends to zero and X tends to uy exactly. This is written mathematically as

lim X = px

N
An cquivalent and more common way of expressing it is to use the term “plim’, where plim stands
for ‘probability limit", and emphasises that the limit is being reached in a probabilistic sense:

pliimx = ux

In general, if the plim of an estimator is equal to the true value of the population characteristic. it 18
said to be consistent. In words. a consistent estimator is one that is bound to give an accurate
estimate of the population characteristic if the sample is large enough, regardless of the actual
observations in the sample.

In most of the contexts considered in this course, an unbiased estimator will also be a consistent
one. It is possible to invent examples for which this is not true, but they are usually artificial. The
reason we are interested in consistency is that it sometimes happens that an estimator that is
biased for small samples may be consistent. This can be used to justify its use. despite the fact
that it is biased in small samples. Diagram (B) below shows how the probability distribution might
look for different sample sizes. The fact that the distribution becomes centred on the true value as
the sample size increases. and eventually collapses to a line at the true value, indicates that it is

consistent. (5) Biased but consisteak
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As we shall see later in the course. estimators of the type shown in the diagram above arc quitce
important in econometrics. Sometimes it 1S impossible to find an estimator that is unbiased in small
samples. If you can find one that is at least consistent. that may be better than having no estimate
at all. However, you should remember that a consistent estimator might perform worse than an
inconsistent one in small samples.

10.12. What you must do before the lecture next week (Tuesday, 29th January, 1999,
‘Introduction to econometric models’)

Read these lecture notes carefully and make sure you understand all the concepts and terms. If vou
need help, see me or someone else about it before next week. Do all the questions on the attached
assignment sheet for this lecture. As usual. solutions are attached.
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Assignment for Lecture 10. Essential statistical concepts
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Assignment for Lecture 10. Essential statistical concepts
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