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Lecture 13. Introduction to dvnamic models: Part 1 | Dr Christian P H Salas

13.1. Introduction
This lecture is intended to cover evervthing vou need to know about dynamic models for the
remainder of the QMII course. It comes in two parts, dealing with the following topics:
Part 1 Section 13.2. Dynamic structural equation systems: some basic concepts
Section 13.3. Another example of a dynamic structural equation model
Section 13.4. The partial adjustment hypothesis
Part 2 Section 13.3. Expectations models
Section 13.6. Stochastic dynamic models
Section 13.7. The rational expectations hypothesis
You are expected to work through Part 2 over Reading Week. Part | (which you should work
through this week) is the most important part in terms of your project work, and the material we
will cover after Reading Week.

Time is a crucial factor in many areas of economics. For example. “old habits die hard’, so when
circumstances change. firms and households may not be able to adjust their behaviour immediately.
It may take some time before it is recognised that circumstances have changed! Large capital
investment decisions may have long-lasting consequences ¢.g. building a ship takes vears. In many
cconomic decisions (¢.g. buying company shares). the conditions prevailing at the moment of
decision are less important than those expected to prevail at some future times.

In this lecture. we consider econometric models designed to describe the behaviour of economic

variables over time. We shall thus be focusing on models for time series data. In Lecture 11. we

used the following consumption function equation to introduce some basic concepts:
C=a+BY.+u

We now regard this as a static equation, The only determinant of current consumption 1s current

income. If Y, increases by one unit in period t, C, is assumed to increase by f units in the same

period. In other words. all “adjustments’ are assumed to be completed in a single period.

An example of a dynamic consumption function equation is obtained if it is assumed that there is a
one-period delay before consumption responds to income. We can write
C=a+BY, Tuw

and say that consumption depends on income “with a one period lag”. Another example arises if it
is assumed that C. depends on current income, and also on consumption last period (‘lagged
consumption’) ¢.g. because consumer’s habits take time to change. We could then write

C.=a+BY, +vCy + 1,
This equation is an example of a difference equation. The term ‘difference equation” applies
generally to a relation among the values of a variable at various points in time (Chiang.
Fundamental Methads of Mathematical Economics. provides a superb introductory treatment of
difference equations. I strongly recommend that vou read him).

13.2. Dynamic structural equation systems: some basic concepts

In this section. we look at systems of structural equations in which some of the equations contain
dvnamic elements as discussed briefly in the introduction. Such dynamic systems describe the
behaviour over time of the endogenous variables, and we shall be interested in studying the
nature of the time path of each variable, as well as the question of whether time paths
converge to equilibrium positions. As usual. we shall develop the principal ideas in the context of
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a simple Keynesian national income model. As the disturbance term is not relevant to the
discussion in this section, we can neglect it for the moment, and focus on the systematic parts of
the model.

Let us amend the two-equation national income model of Lecture 11 by incorporating into it a one-
period delay in the consumption function:

C=a+ ﬁYg.]
Y =Ci+Lk
endogenous variables: C.. 'Y,
exogenous variables: |,
Suppose investment is equal to the constant I in every period ie. L =1 fort=1. 2. 3. .. We now
ask: what is the nature of the equilibrium position?
The equilibrium values of the endogenous variables are defined as the values that, once
achieved, are maintained thereafter. The equilibrium values of consumption and income, denoted
by C° and Y* can be obtained by solving the following pair of equations:
C=a+BY
¢ - C! + l
Notice that the time subscripts have been eliminated from the model: by the definition of
equilibrium, consumption and income do not vary over time once equilibrium has been
attained. Substituting the sccond equation into the first, and rearranging gives

o T Bl
1-p
Substituting this result into the second equation and collecting terms gives

Ve = a + 1
1-B
Thus. the equilibrium position (or the “solution’) of the dynamic structural equation system
C: =a+ BY'!-I
Y. =C+1L
endogenous variables: C. Y,
exogenous variables: |,

; o + Bl a+ 1 . . !
s C° = ——B— and Y* = . Note that this solution is exactly the same as for the static

1-B 1-B
model discussed in Lecture 11 (see page 3 of the handout for Lecture 11). This is because
C'=a+BY*
Y =C+1

is a static model. The equilibrium position of the dynamic system has thus been found as the
solution of a static model obtained from the dynamic system by ignoring differences in the time
subscripts. This statement generaliscs: For every dynamic system having an equilibrium
position, there is a corresponding static system which describes that position. However, one
static system may describe the equilibrium position of a number of different dyvnamic systems,
which all “collapse’ to the same static model when time subscripts are eliminated. For example,
C: =+ B\f,_.:
Y.=C+1]
endogenous variables: C,. Y,
exogenous variables: |,



EC2203 QUANTITATIVE METHODS IN ECONOMICS 11 (1998-1999) @

is a different dynamic system to the one introduced earlier because it involves a two-period lag. but
it has the same equilibrium solution.

Now we consider the time path of the variables and, in particular, whether this equilibrium position
can be reached. The starting point of the path is denoted by C, and Yo, called the initial conditions
or the initial values. A dynamic structural equation system gives the time path of C. and Y, in
terms of initial conditions, parameter values, and values of exogenous variables. If these paths
tend to equilibrium irrespective of the initial conditions, the system is said to be stable.

It is convenient at this point to carefully distinguish the income variable in the two forms in which
it appears in the structural equation system: we call Y., a lagged endogenous variable, and Y. (and
also C,) current endogenous variables. The two equations of the model then describe the
determination of the two current endogenous variables in terms of lagged endogenous and
exogenous variables. and these together are called predetermined variables. The structural
equation system has a reduced form, just as in the static case, but the previous definition of a
reduced form equation requires a slight extension in the dynamic case: it describes the
determination of a current endogenous variable in terms of parameters and predetermined
variables. Note that, with this definition, the consumption function in our simple model
Ci=a+BYu
Y. =C.+1]
endogenous variables: C.. Y,
exogenous variables: I.
is already a reduced form equation. Substituting the consumption function into the income equation
and rearranging vields the following complete reduced form:
C.=a+BYu
Y. =a+BY.u T

The reduced form allows us to calculate the time paths of C, and Y, step-by-step. Given an
initial condition Y, and the value I, the reduced form above gives C; and Y,. Then given Y, and I».
the reduced form above gives C> and Y». Given Y: and [, the reduced form gives us C; and Y: etc..

The reduced form may not be the most convenicnt solution form if we wish to describe the
evolution of a single endogenous variable. In the example above. it Is necessary (o solve both
reduced form equations period by period in order to obtain the path of counsumption, for instance.
If our model consisted of hundreds of equations. but we were only interested in the time path of one
endogenous variable, it would be extremely nefficient to attempt to obtain this time path by
iterating through all the reduced form equations. We therefore introduce the concept of a final
equation, which expresses a current endogenous variable in terms of exogenous variables and
lagged values of itself, but no other endogenous variable. With this definition. the reduced form
equation for income above is already a final equation: it describes the evolution of income without
reference to the behaviour of consumption. However, in the consumption reduced form equation
we need to get rid of Y..; to obtain a final equation. We can do this by using the identity
Yo =Co 1

Substituting this into our dynamic consumption function above we get the following final cquations
for our model:

Ci=a+pCu + Bl

Y, =a+ BYx-l +1;
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- The advantage of these final equations is that they can be used independently of one another to
describe the time path of the respective endogenous variables. Each is a difference equation in a
single endogenous variable.

A final equation allows the calculation of the time path of an endogenous variable period-by-period
(without reference to the other endogenous variables in the model). In other words, vou you can get
C, for example, then C..;, then Cy.2. and so on. However, for some purposes, it may be necessary
to have a general expression for the value of the endogenous variable at any point in time as a
function of time, exogenous variables, initial conditions and structural parameters. The
solution of the difference equation provides such an expression. and we now briefly look at the
solution of first-order difference equations in a general context (for an excellent and comprehensive
introductory treatment of difference equations. se¢ Chiang. Chapters 16 17 and 18). You should
be able to grasp the following discussion even if you have not studied difference equations before.
The linear first-order non-homogeneous difference equation with coefficients a and b 1s
vi=a+byu
Let v° denote the equilibrium value of v i.c. the value such that if y 1s set at v*, then it will remain
there for ever. Then in equilibrium, we must have

V=a+ by
which implies that

s, A

: 1-b
or

a=(1-by*

Substituting this expression for a into the original difference equation above we get
ve=(1-b)y* + by
Rearranging this gives us a ‘homogeneous” difference equation of the following form:
vi- ¥ = b(vis =)
Given an initial condition vo, we can then write
vi - ¥* = by - ¥°)
Using this expression, we can then move forward one period and write
va -y = bly; - ¥) =bib(yo-¥)} = b(yo - ¥°)
Using this expression in turn. we can move forward again by one peried to get
ys- v = blys - ¥9) = b{bys - Y} =0 - ¥)
and so on, We can write the general expression for time t as
v ¥ =b'(vo - YY)
This is called the general solution of the difference equation. which allows us to get the value of v;
for any time t. We assume that the system did not actually start out in equilibrium, so that v, # %
(otherwise there would be no point in studving whether the system converges to equilibrium!). Then
the term on the right hand side of the general solution of the difference equation (v, - ¥°) does not
equal zero. Since y, approaches y* if and only if the right hand side of the general solution goes
to zeroast —» o, weneed b’ —>0ast > @ The necessary and sufficient condition for b' > 0as
to>xishbl<l(e-1<b<l) which is called the stability condition.

Applying this general result to the final equations of our dynamic model (which are difference
equations, remember) we se¢ that in the first-order case, whether a dynamic system converges 10
an equilibrium depends on the magnitude of the coefficient of the lagged dependent variable in
the final equation. If [bl < 1. the values of v, approach the equilibrium value v©. If [b| > |, the
system is said to “diverge” or ‘explode’.
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Given that |b] < 1, convergence to equilibrium will be oscillatory if b < 0. and smooth if b > 0. You
get oscillations when b < 0 because b’ is then positive when t is cven, and negative when t is odd.
So b' alternates in sign fort=1,2,3.4.5.6, . .. whenb <0.

To apply these insights, let us return to our structural equation model:
C; =+ BYM
Y =C+L
endogenous variables: C.. Y,
exogenous variables: 1,
We saw that the final equation for consumption is
C=a+ ﬁcx-l b Bl:-l

+ BI
Assuming that I. = I, we had obtained the equilibrium position as C = a_g_ . This is analogous

- : ; . a
to our little difference equation example above: V° = —l— In the same way that we got the

general solution for that difference equation, we can also get the following general solution for C;
in our dynamic model:

C,-C*=pY(C,-C)
The stability condition is | B < 1, and we expect to get a stable solution since B is the marginal
propensity to consume. This would have to be tested by estimating the dynamic structural
equation model using time series data.

The two types of convergent solution are sketched in the diagrams below, assuming that C, < C".

Ce-(*®

Co=C8
IBl<\, g<o |8il<\, B>»o

Note that the assumption that I, is constant implies a fixed equilibrium value C. If we were to

specify that I, varied over time in some way, following an upward linear trend, say, then the
equilibrium position would be a moving one, and the path of C, would approach this
equilibrium path rather than the horizontal line in the diagrams above.
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An important point to make is that exactly the same stability condition for our dynamic structural
equation model (i.c. |B| < 1) is obtained by examining the final equation for income
Yi=a+BYu+

(check this for yourself). In other words. it does not matter whether we look at the final equation
for C, or Y,. This is because both final equations have the same autoregressive structure - the
number of lagged values of the dependent variable that appear on the right hand side, and the
coefficients with which they appear, are the same. This is a perfectly general result. Even if you
have a dynamic structural equation model involving hundreds of equations, you only have to
look at one final equation in order to work out the stability condition for the entire model. In
practice, we examine whichever final equation is easiest to derive.

13.3. Another example of a dynamic structural equation model
Although we only need one final equation to work out the stability condition for an entire model, it

sometimes happens that other final equations are also required for other purposes. In this case, the
knowledge that they must all have the same autoregressive structure can considerably reduce the
computational difficulties involved in deriving them. To illustrate this. we consider a three-cquation
dynamic model based on the following static model:

C=a+BY
Y=C+1I
[=vY +A

endogenous variables: C, Y. 1
exogenous variables: A
(recall that a static model can serve as a description of the equilibrium position for one or more
dynamic models. It is useful to begin the specification of a dynamic model by considering first the
static model that describes its equilibrium (if it has one)). In this model. investment now has a
component that depends on income, together with an "autonomous’ component A. The dynamic
model we shall use retains the lagged consumption function of the previous section, and specifies
that the other two equations involve only current dated variables. Thus, the dynamic model we
shall study in this section is as follows:

Cl =Q+ BY!-I
Y.=C +1L
L=vY,+ A

endogenous variables: C., Y:, 1

exogenous variables: A
It is simpler to assume that the exogenous variable has a constant value A, say, so that there is a
fixed equilibrium position given as a function of A. rather than a moving equilibrium position
which is a function of A,

Substituting the equations for C; and L. into the income identity gives
Y=o +BYu + Y.+ A

Solving this equation for Y, gives the reduced form equation for income:
Y, = a+A —-B——Y‘,,

-y =%
Notice that this equation is already a final equation: it contains no lagged endogenous
variables other than lagged values of Y, the dependent variable. The first term on the right hand
side corresponds to the constant “a” of the non-homogencous difference equation we looked at
earlier: v, = a + by.,. The coefficient of Y., corresponds to the coefficient b. required to be less
than 1 in absolute value for stability. A general solution for Y, in terms of an initial condition. an
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equilibrium value (itself a function of @, B. 7 and A) and time can then be easily derived (vou could
do this for vourself as an exercise). For our present purposes, we only need the stability condition.
which by inspection is
-1 < -—E- <]
1-¥
If this condition is satisfied, then the entire three-equation system must be stable. It converges to
the equilibrium position calculated as the solution of the static model.

The value of —]B—{ determines the stability properties of all three endogenous variables, as stated
above, but if the final equations for consumption or investment ar¢ required for other purposes,
then knowledge of the autoregressive SIructure of the final equation for income is useful. For
example, the consumption function has no current endogenous variable on the right hand side, and
50 is already a reduced form equation. To obtain the final equation, we need to express the right
hand side in terms of the exogenous variable and lagged values of consumption, not income or
investment. We cannot now substitute from the lagged income identity (as we did in the last
section) because this introduces the lagged value of another endogenous variable (1,). However,

subtracting times the lagged consumption equation produces an expression in Y, and

Y., which can be simplified by substituting from the final equation for income above. This
does the trick:

B Ca=a+BYu- p

b= =

G - (o +BY.2)

)‘Q(YM‘ B
=¥ =
+A
ol b PRy
1 1=y

- A
|

O.( l ) Y-..‘)

The second term on the right hand side of the last equals sign comes from the final equation for
income obtained earlier. So the final equation for consumption 1§

o+ A
Co=a(l - —B‘)‘ﬁ( )t Cui
1-% 1-v 1-%
As an exercise (in elementary algebra!) yvou should venify for vourself that this last equation can be
simplified to
A
C=(a+ "ﬁ_‘) + b Cui
=% k=%

So notice, then, that we have used the autoregressive structure of the final equation for income
to simplify the derivation of the final equation for consumption. Again, the bracketed expression
corresponds to "a’ in the simple difference equation we looked at earlier (ic. . =a T byu). and

B

1=y

corresponds to the parameter b. Substituting these values of a and b into the formula a/(1-b)

gives the static equilibrium level of consumption as a function of a. B.vand A.
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13.4. The partial adjustment hypothesis
So far. we have looked at dvnamic structural equation systems, but we have not really looked in

detail at how dynamic terms can arise in equations. In this section. we study the famous partial
adjustment hypothesis. Again, we shall neglect the disturbance term for the moment.

We suppose that there is a “desired” or *planned’ level of some variable that an economic agent
would like to achieve at time t. and denote this as y;*. For example, this might represent a firm’s
optimal capital stock. But assume that there are frictions, delays, costs of doing business, habit
persistence, etc.. such that the desired level cannot be entirely achieved in a single period.

Starting from the previously existing level yu.1. the change required to attain the desired level is
(_\.-._t = .\.M)
but we assume that the actual change (y; - ¥.1) is only a fraction of this. Assuming that the
proportion achieved is (1-y). where 0 <y < 1, the partial adjustment hypothesis can be written
Yo XYer s (1-9)(v* - Yer)
or equivalently,
v = (19)ye* + 1y
Small values of y imply relatively quick adjustment, and if y = 0 adjustment is complete, not
partial, in a single period. Larger values of y imply that the past value of the variable exerts a
greater influence, and if y= 1, nothing ever changes.

We need to sav a bit more about the desired value v.*. If data on this are available, then the
above equation can be estimated. But this is very rare. and we must usually provide a theoretical
explanation of how the unobservable v.* 1s determined by observable variables. For example. a
firm's (unobservable) optimal capital stock might depend on the prices of its output. and the
factors of production which can be observed.

As a simple illustration. suppose that the desired level depends on a single explanatory variable x;
as follows:
W =0t B

Then on substituting this expression for y,* in the equation v; = (1-7)v,* + 7y we get the following
relation between observable variables:

vi = a(1=9) + B(=y)x + ¥y
It is used to be said that the partial adjustment hypothesis is ‘ad hoc’ (i.e. not derived from a
fully worked theoretical model of economic behaviour), but it has been shown that a
justification can be provided in terms of a cost minimisation procedure. Suppose that a firm
selects the value of the variable v, so as to minimise the weighted sum of ‘disequilibrium” and
“adjustment’ costs:

Co=aily: - ¥ + 2y V)
The first term on the right hand side represents the costs incurred by being away from the
optimum or desired position y.*, and the second term represents the costs of changing y, for
example ‘hiring and firing’ costs if y represents the size of the firm’s labour force.

The above cost function is quadratic. and implies that positive and negative deviations are equally
expensive. To find the value of y; that minimises C.. we equate the first partial derivative to zero:

EC/Av. = 2ai(y: - m*) + 2axyi- yu) = 0
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So we have 2(a; + ax)y, - 2ay* = 22y = 0. Solving this for y; gives
v = [af(ar+an)ly:* + [af(artaz)lyn
(verify this for vourself: it’s easy!). On setting ¥ = ax/(a;+a;) so that Iy = a,/(a;+a;) we get
vi=(ly Wt v
which is the partial adjustment hypothesis! Subtracting V.1 from both sides we can write it in more
familiar form
AT (8 (T=y)y:* - Vi)
If adjustment costs are relatively important, the coefficient a: will be relatively large, which implies
a value of ¥ near to 1, and relatively slow adjustment. Obviously, there are no costs of adjustment
if a; = 0, and the firm moves immediately to the desired position ¥*.

(End of Lecture 13 Part 1)
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Lecture 13. Introduction to dynamic models: Part 2

13.5. Expectations models
This is the second part of Lecture 13, which deals with dynamic models in econometrics. The

following topics are covered in the two parts:
Part1 Section 13.2, Dynamic structural equation systems: some basic concepts
Section 13.3. Another example of a dynamic structural equation model
Section 13.4. The partial adjustment hypothesis
Part 2 Section 13.5. Expectations models
Section 13.6. Stochastic dynamic models
Section 13.7. The rational expectations hypothesis

It is convenient to briefly review the material of Part 1. It introduced vou to the “workings® of
dynamic structural equation models. These describe the behaviour of endogenous variables over
time. We are usually interested in the time paths of these variables. and the conditions under which
they tend to an equilibrium value. We extended the concept of ‘reduced form™ equations by saying
that, in a dynamic context, these explain endogenous variables in terms of exogenous variables,
‘lagged” endogenous variables and parameters. Exogenous variables and ‘lagged’ endogenous
variables are classified together as predetermined variables. Thus, we say that a dynamic
structural equation system has a reduced form in which the endogenous variables of the model are
explained in terms of predetermined variables and parameters only. We also introduced the concept
of a ‘final’ equation which expresses an endogenous variable in terms of exogenous variables,
lagged values of itself, and parameters. no other endogenous variables or lagged endogenous
variables appear in a final equation. The final equation for any one of the endogenous variables of
a dynamic structural equation system can be used to determine the stability condition for the entire
system. This is a condition that must be satisfied by certain parameters of the model if the time
paths of the endogenous variables are to converge to equilibrium positions. Finally, we considered
the partial adjustment hypothesis as on¢ way of explaining how ‘dynamic™ terms can aris¢ in
equations.

A second group of models that can give rise (o dynamic equations involves expectations or
anticipations of the future values of a variable. It is very important here to distinguish between
two possible scenarios: the first arises when the variable about which expectations are formed
is an exogenous variable; the second case is when expectations are being formed with regard
to an endogenous variable. The most famous model of expectations with regard to an exogenous
variable is the adaptive expectations model, which we shall discuss in this section. The most
famous approach to modelling expectations with regard to an endogenous variable is the rational
expectations hypothesis. which we shall discuss in Section 13.7.

In this section. we assume that behaviour with respect to a particular dependent variable is
influenced by expected or anticipated values of an exogenous explanatory variable. The
expectations might relate to such variables as sales, prices, incomes, or interest rates depending on
the particular problem at hand. For example. a retailer’s stock of goods might depend on the sales
he/she expects to make in the next period, money balances may react to the level of income
expected in the next period, raw material stocks may be adjusted to reflect expected future prices.
etc.. The discussion in this (and the next) section is based on the simple behavioural relation

w=a+t BXt-l
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where X.1 denotes the forecast or expected value of x,.;, formed at time t. For example, v, might

denote current inventories, and X..; might denote forecast sales. Although actual observations on
the expectational variable might be available from. say, surveys on sales anticipations or business
investment intentions, these instances are relatively rare, and in most cases anticipations are
unobservable. To obtain a model in terms of observable variables, it is necessary to add an
assumption about the formation of expectations.

A simple assumption is that currently observed conditions are expected to prevail in the next
period, giving what are known as “naive’ or ‘no-change’ expectations:
X+l =Xt

If the assumption of naive cxpectations is incorporated in the above behavioural relation we get v,
= & + Px, which is indistinguishable from a simple static relation between the observed values of y
and x. A slightly less simplistic assumption is the so-called ‘same-change™ forecasting rule, in
which the next period’s value is anticipated to differ from the current value by the same amount
that the current value has been observed to differ from the previous value:

Xiol =X = Xe = Xl
More generally, it might be assumed that economic agents use their knowledge of the behaviour of
the variable over time to calculate forecasts based on past data. If successive x-values are
correlated with one another, this autocorrelation indicates the extent to which current and past
values are helpful in forecasting future values. To be more precise, we assume that economic
agents have information about the data generating process (DGP) of the x-variable. and that thev
use this information optimally. A statistical model of the x-variable is constructed, and then the
forecast calculated.

A basic building block of such models is a “white noise’ process, involving ‘purely random’
variables conventionally denoted by &.. A white noise process has three defining characteristics:
(1). E[&] = 0 for all t;

(2). E[&] = & for all t i.e. the variance of & is constant over time;

(3). Ef& &]=0 for t=s i.e. there is zero covariance between values of & at different time points.

The fact that there is no correlation between any pair of values implies that current and past data
contain no information that is useful in forecasting the next value. so the best estimate is simply the
mean value i.e. zero. Of course, economic time series typically have non-zero autocorrelation
(e.g. prices usually increase steadily over time, so high current values lead to even higher
future values) but the non-autocorrelated nature of & makes it convenient to work with when
constructing more general models.

Example 1: Suppose we happen to know that x; obeys the first-order autoregression

X; = PXel T & lpl< 1
This has the form of a regression of x, on its own past value, hence the term ‘autoregression’,
and it is of ‘first order’ because only a one-period lagged value of x appears on the right hand
side. We know that the value we seek to forecast will also be generated in the same way:

Xe) = PXe T &g
and since we have no information at time t that is useful in forecasting .., apart from its zero mean
value. but x. is known, a sensible forecast for us to make is

X141 = PXy
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This implies that once we have observed the current value x., then previous dare Xe 15 Xeoysw i
convey no additional information that would help us in forecasting Xi.;.

We said that the forecast X:.1 = px, is the “sensible” one to make, given that x. follows a first-order
autoregressive process, but it is also the “optimal” forccast in a very important sense: it minimises
the mean squared error of the forecast. To understand this. note that the forecast error is
Xt} = X+l

and we wish to make the expected value of the square of this as small as possible 1.¢. we wish to
minimise

El(xeet = Xee1 )]
(We wish to minimise the expected square of the forecast error because we want 1o ‘penalise’
negative deviations just as much as positive ones). Let us define an ‘arbitrary” forecasting rule in
terms of current and past data:

£ .
Xesl =Xy T AN Xy T T Z‘_“a)x, i

Notice that this equals our ‘sensible’ forecasting rule Xio1 = px, only when a, = p, anda; =a, = - -
.= (), Using the arbitrary forecasting rule, and assuming that x, follows a first-order autoregressive
process (so that we have X.; = px; + &.1) we get the following expression for the mean squared
error of the forecast:

E[(1 - X ¥ =Elpx+er- 3, 2%, )]

= E[&-lz] + E|(px; - Zina Xiej )’] + expected value of cross-product

between &.; and terms in Xy Xep Xeo, .

The expected value of the cross-product between €. and terms in X, Xui, Xu2, - - - is zero, because
&, is uncorrclated with any previous data. Thus we end up with the following expression for the
mean squared error of the forecast:

El(xe - Xot ] = Efew’) + Ellpx - 3 ax, )]
Now, we cannot do anything to minimise the size of the term E[s..;’], but we can make the term
El(px. - T 2 X, )] equal to zero (its minimum value) by setting ay = p. anda; =a; =+ -+ = 0.

Thus, we can make the mean squared error of the forecast as small as possible by using our

‘sensible’ forecasting rule X... = px.. and it is in this sense that our ‘sensible’ rule is also the
‘optimal’ one when x, follows a first-order autoregressive process.

To make sure that we do not lose sight of what we are doing, let us briefly recap at this point. We
are assuming in this section that a dependent variable y; is affected by the expected future value of

an exogenous variable X:.) according to the following simple behavioural relation:

wi=o+BXwm
The expectation term on the right hand side is unobservable, so in order to get an equation in terms
of observable variables. we are using statistical models of the behaviour of the variable x; over time

to calculate X ‘optimally’. We have just demonstrated that when x, follows the statistical model
known as the “first-order autoregressive process . the “optimal” forecast of Xi.; IS Xu1 = pXe.
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Now let us continue. An interesting point to make is that as p —> 1, the autoregressive model
becomes

Xt =X &
or equivalently
Xp= X1 =&
or using the “difference operator” A,
Ax, =g

This is the very famous ‘random walk’ model, in which the first difference of the x-series is purely
random. Random walk models have been extensively applied to share prices in studies of stock

exchange behaviour. The optimal forecasting rule is now Xi1 = X, and so we see that the
‘naive’ forecast is actually the ‘best’ forecast if the series being predicted follows a random
walk.

Example 2: We now modify the first-order autoregression model by making its error term a
‘moving average of two successive random shocks:

X = PXes + & - 08 o] <1
This is the famous autoregressive-moving average model, shortened to ‘ARMA’ in the
literature. You will become very familiar with this model (and its extensions) if vou go on to do a
Master's degree. It says that a given random shock has an effect that persists for two periods. since
it affects the contemporaneous x-value, and also the following value.

Given that the exogenous variable x, follows an ARMA process, it can easily be demonstrated that
the “optimal’ forecast of X:.1 (i.¢. the one that minimises the mean squared error of forecast) is

:\:z-l = (p -8) ZT—J GJX(.,

=(p- 0)(x, + Oy + e:x'.-: + 83Xl»3 +.0)
= (p - 0)x + (p - )(Bxuy + 072+ 8xes + )
We can get a neat expression for this by noting that the second term on the right hand side of the

last ‘equals sign’ is just 0x.. where x: is the forecast of x, calculated at time t-1 using the same
forccasting rule. Thus, we get the following expression for the optimal forecasting rule for x..
when x, follows an ARMA process:

X1 = (p-0)x + 0%,

If we set p = 1 in this equation, we get the very famous adaptive expectations model:
Xt =(1-0)x.+0x,
We can rewrite this in a different way by adding and subtracting X: on the right hand side. We get
Xen = X (1 -0)% +0X: - Xt
=% +(1-0)x +(8-1)x
= X +(1-0)x - (1-0)X:
= Xe +(1-0)(x: - X:)
So we have the following two equivalent ways of writing the adaptive expectations model:
Xet = (1-0)x.+0X:
Xer = Xy +(1-0)(xi= X1)
The adaptive expectations model simply says that expectations are amended or ‘adapted’ in
proportion to past forecasting_errors, the next period’s forecast X1 being given by the
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forecast of the current level, X, amended by a proportion of the current forecast error, (X -

x: ). If the parameter @ is close to zero, expectations adapt rapidly to recent data, while if 6 is near
1. expectations are slow to change.

Like the partial adjustment hypothesis, the adaptive expectations hypothesis has often been
criticised for its apparent “ad hoc’ nature. But the argument above shows that the hypothesis is
‘sensible” if we belicve that the exogenous variable is generated according to

Ax; =, - Bg,,
(which is just an ARMA process with p = 1), and that economic agents make ‘optimal” forecasts
within this framework.

Returning to our original behavioural equation
v, = o+ BXeot
recall that we are exploring ways of getting rid of the unobservable expectations variable on the
right hand side. One way of doing this (which you should learn like a ‘parrot’, because it is a
frequently employed technique in many different contexts) is to use the adaptive expectations
equation
Xt-1 =(1 - B)x, + 0 x.
We have
vi- Oy =t B =8(a+Px:i)
=a(l -8) +B(X:1 -0X1)
We can get rid of the second term on the right hand side by noting that
Xt - 00X =(1-0)x
(this is straight from the adaptive expectations equation above). So we can write
vy =By = a1 - 0) + B(1 - O)x
or equivalently
v = a1 -6) + B(1 - 0)x, + Oyus
This is the “final equation’ for the adaptive expectations hypothesis. An important point is that
this is precisely the same final equation as that obtained from the partial adjustment
hypothesis (see page 9 of Lecture 13 Part 1), showing that there exists a ‘duality’ between the
adaptive expectations and partial adjustment hypotheses. Thus, if we find that a regression
equation of this form provides a satisfactory explanation of v,, it is open to argument whether lags
in adjustment or expectational variables are at work. Simple regression analysis cannot be used
to distinguish between the bvo hypotheses. However. we can distinguish between the two if we
introduce an error term into the models. This is discussed in the next section.

13.6. Stochastic dynamic models
In the introduction to these lecture notes (Section 13.1) we wrote down a dynamic consumption

function that included a random disturbance term, but in the subsequent sections this term has been
neglected in order to focus on other aspects of dynamic models. We now consider the consequences
of reintroducing the disturbance term. The reasons for the inclusion of a random disturbance term
in a dynamic behavioural relation are exactly the same as those discussed in a static context in
Lecture 11. The random error represents the effect on the dependent variable of a host of
omitted influences that are unobserved or unidentified.
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When deriving the final equation for the partial adjustment modcl (see page 9 of Lecture 13 Part 1)
we assumed that the desired level of the variable v;, denoted by v.*, depends on a single explanatory
variable x, as follows:
vi*=a+px

Then on substituting this expression for y.* in the partial adjustment equation v; = (1-y)y* + 1
we got the following relation between observable variables:

w=a(l-n+ BlI=y)x: + ¥
Suppose we now add a random error u, to the equation for v;* to get

v =0+ px +u

As usual, we assume that E[u,] = 0. Substituting this stochastic equation into the partial adjustment
equation y; = (1-y)y:* + vy we get the following relation between observable variables, which now
includes a random disturbance term:

vi = a(1=y) + Bl + yyes + (1)
As in static models, the disturbance term (1-pu, is interpreted as the non-systematic part of the
relation. Notice that it has zero mean: E[(I-pu] = (I-pEfu] = 0. The systematic part of this
equation describes the determination of the current endogenous variable y, by the exogenous
variable x. and the lagged endogenous variable v i.e. by the predetermined variables (using the
terminology introduced earlier).

We shall now show how the addition of random disturbances makes the partial adjustment and
adaptive expectations models observationally distinguishable. This is because the error tern in
the final equation of the partial adjustment model is simply (I-y) times the disturbance term
introduced into the equation for y.*, whereas the error term in the final equation of the
adaptive expectations model is a moving average of the values of the disturbance term at
different points in time. To see this. let us add an error term to the behavioural relation in the
expectations model:
w=o+ Xt
Assuming that the unobservable X:.; obeys the adaptive expectations model
X =0x =(1 -9)x,
we obtain a relation between observable variables by transforming in a manner equivalent to that
used earlier in this lecture (this is the method 1 told you to learn like a parrot!):
V= Oy =0 Xt Fu-0a Xy + )
=a(l -9)'*' B(XI'I -OX1)+ (u, '6[];.1)
= a(l -9) + B(l -8 + (u - Ou.y)
Therefore we have the relation
M= a(l -8)+ B(1 - 0)x, + By + v
where the disturbance term is given by
v = (u, - Buyy)
with E[vi] = E[(u, - 8u.;)] = E[u] - 8E[u..] = 0. The thing to notice is that even if the original
disturbances u, are not autocorrelated (in particular, Efuu.,] = 0), the new disturbances v,
are composed of two successive u-values, and hence must exhibit autocorrelation. This can
casily be demonstrated as follows:

E[vivea ]=E[(u, - Qup)(ues - Bu,2)]=Eut B, -Bu 2 +87u, 0] = El - Bu.,” | = -0E[w." | =00’

So successive values of the v-series are negatively correlated: E[vivi1] = -8 < 0.
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This result provides a contrast to the partial adjustment model: if the random disturbances in
the behavioural equations of each model are free of autocorrelation, so is the disturbance term
in the final equation of the partial adjustment model, but not of the adaptive expectations
model. As stated carlier. the error term in the final equation of the partial adjustment model is
simply (1-y) times the disturbance term introduced into the equation for v;*. whereas the crror term
in the final equation of the adaptive expectations model is a moving average of the original
disturbance, as a result of the transformation used to eliminate the unobservable variable, so
the disturbance term in the adaptive expectations model is generally autocorrelated.

Although the systematic parts of the final equations are identical in the partial adjustment and
adaptive expectations models, the correlation pattern of the disturbances is not, and this can be
exploited in empirical work.

13.7. The rational expectations hypothesis
In Section 13.5. we considered one basic approach to the modelling of unobservable expectations

variables which was based on the assumption that expectations are formed by extrapolating from
past experience. Thus, forecasts of the future value of a variable were calculated from its
current and past values.

This approach remains the appropriate one if the variable about which expectations are formed is
an exogenous variable, since by definition, our theories and models do not describe the
determination of the values of exogenous variables. However, if the variable about which
expectations are formed is an endogenous variable, then it is more appropriate to assume that
expectations are formed as if agents anticipate the workings of the model that determines the
value of the variable.

For example. a change in the level of excise tax on a commodity will have an cffect on the price of
the commodity. and if cither suppliers or consumers wish to predict this effect they will do better to
consider relevant demand and supply factors than to basc a prediction on past prices. The
discussion in this section proceeds in the context of a simple example, namely that of the
market for an agricultural commodity.

We assume that the farmers who produce this commodity must make their planting decisions
before they know the price that they will receive for the crop at harvest time. If a high price for
the crop is anticipated, then a substantial harvest will be planned, but if a low price is
expected, then planting will be reduced.

Using a linear approximation, we can represent the farmers” supply function as
Q.=But PP Bi=0
where Q, is the quantity supplied to the market. P: is the expectation of the market clearing price

P, formed at the time of planting, and we are ignoring random disturbances and other exogenous
influences on supply (such as climactic factors) for the moment.

These ignored factors are among those which contribute to uncertainty about price, but
demand for the product may also be uncertain. In the face of this uncertainty, we might try to
predict the price by looking at past prices. in which case the framework of Section 13.5 is relevant:
for example, the ‘naive’ prediction rule P, = P, might be used, in which case we end up with the
supply function of a simple ‘cobweb’ model.
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However, the rational expectations hypothesis postulates that price expectations are essentially
the same as the predictions of the relevant demand and supply model. Let us complete the model
with the simple demand function
Qi =0+ P, oy <0, 00> Bl’)

and assume that the price adjusts so as to clear the market. The hypothesis is that expectations are
formed as if farmers correctly anticipate the operation of the market. An expression for the
required value of P can easily be deduced as follows. Equating demand and supply gives

o+ a:P. = ﬁg + B: P
Thus. the relation between actual and expected price is easily seen to be

P, = (Bo - o) + (By/ou) P (**)
The value of P; such that this expectation is fulfilled. P = P, is given by solving

P, = (Br_\ -ag)oy + (Q,/ag)Pn

We get
[(on = B ] Pe = (Bo - cwdloy
S0
P.=(Bo- ) (e - B1)
or

P. = (o - B)/(B: - 1)
If vou substitute this value of P into equation (**) above, vou will see after some algebra that you
get P, = P., as required. This price expectation leads to the supply of the quantity

Q=P+ Bzi’_: = Bo + Bile - Bo)(By - )] = [Bol By - as) + Pulow - Bal/(B1 - )
= (auh, - o BB - o)

1€
Q. = (P = Pl (B - o)
The buyers” demand function tells us that, when faced with this quantity, the market will clear at a
price given by
(s - aiB)/(Bs - &) = o + o Py
This can be solved to give
P, = (a1 = Bo)/(By = o)
which is exactly what the price was (rationally) expected to be. In other words. the rationally
expected price is a “self-fulfilling prophecy”.

This exact self-fulfilling nature of rational expectations is modified once random disturbances
enter the model. The stochastic version of our model is

Q=ag+toyP+uy
Q; ot Bi) + B! P‘. + u;\;
and so the relation between actual and expected price becomes
oy + G;Pl U= ‘3-1 + B} pl + Uy
which rearranges to give
P. = (Bu- o) + (Br/ou) Pr + (uz - up)on
Expectations formed at time t - 1 consistent with this relation satisfy
P, = (Br_. - o)y + (B]/Uq)Pt + (U2 - Up Mty
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where U and uz are the predicted values of the disturbance terms. If the disturbances are not
autocorrelated, so that information up to time t-1 does not help in forecasting their values at
time t, then the best forecasts of uy, and . are simply their mean values, namely zero. Then
we end up with the same expression as before for P.:
P.=(a,- BD)/(BI - o)

Now, however, the actual price deviates from this expectation as a result of these unanticipated
random shocks, since the preceding relations give

P1 = Pg + (\131 - U]()/Uq
(You arc asked to prove this in exercise 1 for Lecture 13 - the solution is attached). For example. if
weather conditions are unusually bad. and the harvest is reduced (ux < 0), then the market clearing
price is higher than anticipated (ux/a; > 0, remembering that o, < 0). Thus, there will be errors in
the price forecasts, but these will be purely random, and exhibit no systematic pattern. Having
observed this higher-than-anticipated price, rational farmers” behaviour in the following period will
not change.

We shall now show how the rational expectations hypothesis can give rise to dynamic terms in
equations, We can do this by adding a single exogenous variable to the model. Thus. let us assume
that the level of demand is affected by the variable X;. which might represent consumers’ income or
the price of an imported substitute for the commodity, for example. Now the model is

Q=ap+ P+ o Xty

Q1= B-’I + B] P, +uy
Equating right hand sides gives

oo+ oy Py + X+ = Bo + B P: +uy
which upon rearranging gives
P, = (Bo- oo + (Bi/ou) Po = (onfoy) X + (- uplay
This would be the ‘reduced form’ equation for P.if P. were an observable exogenous variable,
but under the rational expectations hypothesis we simply use it to tell us how the unobservable
variable P. is formed. Again assuming that the random disturbances are not autocorrelated.
expectations consistent with the model satisfy
P, = (|3U - o)y + (Bu‘a;) P. - {oalo) X

where X. is the expectation of X, formed at time t-1. This can casily be solved for P., giving

P = (- BoM(B1 - o) + [0/(By - a)] X,

This result can be interpreted as follows: knowing that demand, and hence the market price, is
influenced by the variable X, it is rational for farmers to take this into account when forming
price expectations, by attempting to predict X,

Errors in forecasting the exogenous variable now contribute an additional component to the error in
the rational expectation, because we have

P,= P: - (afo)(X: - Xo)# (ua - uy)ay
(You are asked to prove this equation in exercise 2 for Lecture 13). However, the error P, - P.
will again be purely random if past information on X is used in an optimal way, so that its
forecast error X. - X, is purely random. For example. if X, follows a first-order autoregression

X‘ = pxl.i + 81

then as we saw earlier, the best forecast calclated at time t-1 is
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X: = pXuy
On substituting for X.. we now obtain an expression for P: in terms of X.; and various
parameters:
P = (oo - B)(Br - o) + [0a/(By - )] X = (a0 - Bo)/(B1 - o) + [ozp/(Br - c)]Xea
On substituting this in turn into the ‘reduced form” equation
P, = (Bo - aw)loy + (Bife) Po = (onfous) X, + (uz - uidiou
which we derived above. and rearranging, we get a dynamic equation linking P and X:
P, = (1o - Bo)/(B1 - o) = (cofor) X + [Brop/on(Bs - 01Xt + (uz - upo
There is no obvious dynamic element in the original model (eg. lags in adjustment). But there
is a time delay between the formation of price expectations, and the realisation of actual price,
and this is enough to give another potential source of dynamic models.

13.8. Some practice problems
Here are some problems to help you become familiar with the algebraic issues surrounding

dynamic models. Full solutions to all the problems are attached.

Exercise 1: On page 9 of the handout for Lecture 13 Part 2. it was asserted that
P.= Py + (uz - w)o,

when the stochastic model is of the form
Qx =0+ oy P+ uy
Q= Bo+ BiP: +ux

Prove that this is true by substituting P: = (c - Bo)/(B - o) into the equation

P, = (B - cw)a: + (Br/ow) Py + (uz - uy oy
(sce page 8) and rearranging.

Exercise 2: On page 9 of the handout for Lecture 13 Part 2, it was asserted that
P; =P - (a:/‘a|)(Xx - Xl) + (u21 - ull)/al

when the stochastic model is of the form

Q| o aﬁ + a-lp| + (I:X; 1 u“

Q=Bo+piP: +ux
Prove that this is true by substituting Py = (oo = BoM(B1 - o) + [o/(By - o0)] Xi into the equation

P, = (By - ), + (Br/ow) Po = (afo) X, + (uz - undfon

(see page 9) and rearranging.

Exercise 3: Consider the market for a commodity produced in an annual crop. The quantity
demanded depends on the current price:

Q=ay+ o P
The quantity supplied this year is a function of last year’s price:

Q=P+ BiPus
and the market is cleared in every year. Under what conditions on the parameters is the system
stable? Now suppose that the quantity supplied is a function of this vear’'s expected price. where
price expectations are formed according to the adapative expectations hypothesis. Show that the
final equation for P; is

_(1-0)B,-ap) |

o,

{P—"—(l -0) +6}P, |

o,

P,
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Exercise 4: Obtain the reduced form and final equation for Y., and the stability condition for the
following model:
C=a+BY.+ '."C:-l
Y. =C+]
endogenous variables: C.. Y,
exogenous variables: 1,
Adding a disturbance term u, to the consumption function, derive the final equation for C; in the
stochastic version of the above model. Check that the final equation for C, has the same
autoregressive structure as that for Y.

Exercise 5: Obtain the final equation for Y, and the stability condition for the following model:

C =a+pY,
Y. = Cl +1
I =vAY, + G,

endogenous variables: Cp, Y. 1

exogenous variables: G,
Adding a disturbance term u, to the consumption function, derive the final equation for C; in the
stochastic version of the above model. Check that the final equation for C; has the same
autoregressive structure as that for Y.

(End of Lecture 13)
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