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14.1. Introduction

So far. we have considered the specification and identification of econometric models. Now we
consider ways of estimating the parameters of such models, and ways of testing hyvpotheses about
them. Which method of estimation is appropriate, and the properties of the estimators depend
on three crucial features of the model:

(1). whether we are attempting to estimate reduced form or structural equations;

(2). whether the predetermined variables in a given equation are all exogenous, or whether
they include lagged endogenous variables;

(3). what assumptions we are making about the error terms in the model eg. can we assume
that successive values of a given error term over time are not correlated with each other?

In this lecture. we consider estimation of the parameters of a single reduced form equation, and
how to deal with the various possibilities encapsulated in (2) and (3) above. (We will discuss how
to estimate the parameters of structural equations in Lecture 18). Before embarking on this
material, we need to formalise what we mean by ‘endogenous’, ‘exogenous” and ‘predetermined
variables in the context of econometric models. We have been relying on the rather simplistic
notion that the endogenous variables are those that are being “explained” by the equations of the
model, while the exogenous variables are those that are *given’ to us a priori, and not explained by
the model. In Lecture 13, we said that ‘predetermined” variables are ecither exogenous or lagged
endogenous. We now distinguish between these types of variables more formally as follows:

(A). In the context of a static or dynamic structural equation model, an endogenous variable y
must be correlated with one or more disturbance terms in the model ie. Efyu] # 0 for some
values of t and s. (B). In the context of a static or dynamic structural equation model, an
exogenous variable x is not correlated with any disturbance terms in the model ie. Efxu =0
for all values of t and s. (C). In the context of a dynamic structural equation model, a variable
7 is predetermined at time t if it is independent of all current and future disturbances in the
model ie. Efzu,] =0 for all s >t.

Note that in the context of dynamic structural equation models, difficulties can arise with lagged
endogenous variables if disturbance terms are autocorrelated. If u, is independent of its own past
values ey, s, - - -, then although y., depends on u..,, it may be independent of u, and can
then be regarded as predetermined. However, if u, is correlated with u.; , then y.. and u,
must be correlated with each other via their common link with u..;, and y., cannot therefore be
predetermined. We will discuss the problems that this presents for estimation in Lecture 16.

You will also need to revise the rules for manipulating expected values given in Lecture 10 Part 1
(page 6). In particular. we will use the rule which says that if X is a random variable, and Y =a +
bX where a and b are constants, then E[Y] = a + b[X]. We will also need the one which says that
‘the expected value of a sum of random variables is equal to the sum of their expected values’.

Finally. vou need to be completely ‘comfortable” (ie. be able to prove) results like the following:

T (X XY -V = T (X, - XY, = T YX, -n¥X

Z?:;(Xl _32): = Zr-l(xl _—)Z)Xi = ZLIXS o n>_{:

Results like these come up again and again when discussing the bivariate regression model.
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14.2. Estimation of a reduced form bivariate equation
Suppose we have n pairs of observations on two variables X and Y:

(Xl: Y|), (XI: Y?)s SRR (Xn,- Yt‘-)
Treating Y as the dependent variable, we could plot these points as in diagram (A) below:
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In the bivariate regression model, we assume that each Y-value is related to the corresponding X-
value according to the following lincar equation:
Yi=a+BX:+tu t=1,..,n

where Y, denotes the tth observation on the dependent variable, X, the tth observation on the
explanatory variable (also called the regressor), u, the tth value of the disturbance term. and o, p
are parameters whose values are unknown and are to be estimated. We suppose that X, is a
predetermined variable (ie. E[Xu] = 0 for s 2 1), so that we are dealing with a reduced form
equation.

One way of estimating the parameters o and B is to “fit” a line to the plotted points by “visual
inspection”. This is illustrated in diagram (B) above. The vertical intercept of the line provides an

estimate ¢ of the parameter o, and the slope of the line provides an estimate B of the parameter

B. The line Y= fiX) = o+ f»X is called the regression of Y on X. Y is said to be the “fitted
value’ of Y corresponding to the value of X. Given an observation X. of the explanatory variable,

we can calculate a fitted value Y of the dependent variable as follows:

Y. =fX)=0a + BXI
Thus, given the n observations X;. Xz, . . ., X, on the explanatory variable, we can compute n fitted

values Y, Yz  ua Y. of the dependent variable, and compare them to the actually observed
values Y., Ys. . . ., Y.. The discrepancies between the observed and fitted values of the
dependent variable are called the residuals, denoted by e, Thus:

e=Y:-Y: t=1...n
These can be thought of as ‘estimates’ of the unobservable disturbances u,, t=1, .. ., n.

The “visual inspection’ method of estimating o and f is very subjective; it is unlikely that two
different people would construct exactly the same line. so different estimates of o and  could
casily arise. A more objective approach, which is also very intuitively appealing. is the statistical
method known as Ordinary Least Squares (or OLS). to which we now tumn
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Given n pairs of observations on two variables X and Y. ie. (X1, Y1), (Xa, Ya2). . . ., (Xa. Yo). the

OLS method of estimation involves choosing those estimates 0. and [3 which minimise the sum of

squared residuals (SSR), defined as
SSR=Y" el =2 (Y. -~a-BX,)
You should know by now that to minimise SSR with respect to a and B we must sct the first-

order partial derivatives with respect to ¢ and B equal to zero:

BR 3 oY, ~a-BXN-D) = 0
oo

SR o G - BRN-X) =0
op

We can rearrange these equations to get

Y, = na + BYE%

Z;Y‘x‘ - dz;xl & BZ:—XZ

These are called the OLS normal equations. The normal equations can be solved simultaneously

for . and B as follows. Dividing the first normal equation by n givesus
1 n Al n o RN . PR Lol
;ZMY, =0+ B;ZMX._ or Y=a + Bd

where Y and X denote the respective sample means. From the equation Y=oa-+ B_)Z , we

get that d =Y- B X . Substituting this into the second normal equation we get
'YX, = (T-BOTL X, + BT X

nT-pR-T1 X, + BT X

(Y -pXX + By X:

nYX-nX + B X

WYX + T X! -nX')

I

Solving this for B we get

'YX, -nYX
Y K nX’
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This is the OLS estimator for the parameter B in the bivariate regrcssxon model Having found B

we can then calculate o from a=Y- B X Thus, we have found the o« and B which minimise

the SSR (as an exercise, you should check for vourself that the second order conditions for a
minimum are satisfied). Let us look more closcly at the terms in the numerator and denominator of

the OLS estimator 3. Looking at the term in the numerator first, we have

Z::] YTX‘ = nﬁ w Zl(xx = ixYx —?) = (n-l)S_\;-,-

where
s“_—z”(x -X)Y, - V)

is the sample covariance bcmccn X and Y (see Lecture 10 Part 2, page 11). Looking at the term in
the denominator we have Zf‘__l X -nX = le(X._ -—)E): = (n-1)sx’, where

o D I0 Tk

is the sample variance of X. Thus, the OLS estimator B in the bivariate regression model can be
expressed equivalently in several ways:

B X Zz;ZY‘X’ _n\ix s Zl:](xl e X)(Yl _Y) = (n = I)SXY _ Sl
> Xi-nX > (X, -X)? (n-1sy sy

The last equality tells us that B can be computed as the sample covariance between X and Y
divided by the sample variance of X.

14.3. Some implications of the least squares estimates

Some very famous implications of the OLS estimates can be obtained by re-examining the first-
order conditions for a minimum of the SSRs, and the normal equations derived from them. We will
use some of these later when studying some other aspects of the bivariate regression model. The
results we ‘prove’ in this section are the following:

(a). The method of Ordinary Least Squares always produces estimates d and (3 which are

- * . n
such that they make the residuals of the regression sum to zero ie. Z & = O

(b). The means of the observed and fitted values of Y are equal ie. Y = Y

(¢). The method of Ordinary Least Squares always produces estimates a and B which are
such that they make the sample covariance between the residuals and the explanatory variable

S (X, - R, =0

equal to zero ie. s.x =

(n-1)
(d). The method of Ordinary Least Squares abvays produces estimates o. and B which are

such that they make the sample covariance between the residuals and the fitted values of the

1 o
dependent variable equal to zero ie. s | = m Zn (Y:=Ye,
eY n-
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The “proofs” are as follows:
(a). The method of Ordinary Least Squares always produces estimates d and B which are

such that they make the residuals of the regression sum to zero ie. Zf_l e =0.

BR - T2 —a-BX)-D =0,

This is obvious from the first-order condition
o

which can be written equivalently as Z:ﬂ Y, - o - BX‘) = 0.or z:; e, =0

e

(b). The means of the observed and fitted values of Y are equal ie. Y &

. . a . 1 n 5N :
Notice that if E & = 0, then it must also be true that — E & =¢e=0.Sincee =Y, -
= n L=

Y, for each t. we must have; = %ZLY: - iZ:ﬂYl = 0 . which implies that Y=Y.
(c). The method of Ordinary Least Squares always produces estimates d and B which are
such that they make the sample covariance between the residuals and the explanatory variable
equal to zero ie. s.x = (T]_T)Z‘_l(x, =X =0
¢SSR
ép
which can be written equivalentlyas > " (Y, - o -p X)X, = 0,0or > eX, = 0.Now,
ZT_Ie:X, = Z:_](X: - )—()e, = (n-1)s.x, where

1 n —
= X, = Xe,
Sex (n-1) Zl_,( ‘ x
is the sample covariance between the residuals and the explanatory variable X. Thus. if
Z;‘__‘e‘x( = 0, then it must also be the case that s.x = 0.

Consider the other first-order condition. We have = Z:l 20— = BX, N-X.) =0

(d). The method of Ordinary Least Squares always produces estimates o and B which are
such that they make the sample covariance between the residuals and the fitted values of the

] n 4 e
TET > (Yi=Y)e, =0.

Notice that s - ¥ =(a + BX.)- (e + BX)=B(X, - X). It follows that

sei'= (n_l)z‘_,](Y-.-Y)e.k = m 1-1B(X:"X)el =Bsx=0.

Intuitively, this last result tells us that OLS estimation ‘splits’ the dependent variable into two

dependent variable equal to zeroie. s . =
cY

n

components, namely an ¢stimate Y = o + BX of the systematic part of Y, and an estimate ¢
of the non-systematic part of Y, in such a way that these two components are uncorrelated.



EC2203 QUANTITATIVE METHODS IN ECONOMICS II @

14.4. Derivation of another expression for [3

We have not vet made any assumptions about the disturbance term u,, because none are needed to
get the OLS estimates. However, the properties of the estimates vary according to the
assumptions made about u,. The most “desirable’ properties are provided by a set of assumptions
known as the Classical Assumptions. These are:

(Al). Efu] =0 for all t.

(A2). Viuj = Efu’] = o)’ for all t ie. the variance of the disturbance term is constant. If the
constant-variance assumption is satisfied, the disturbances are said to be homoskedastic. If not,
thev are said to be heteroskedastic.

(A3). Covfu, u,] = Efuu] =0 for all t #s. With time series data, this is the assumption that the
errors are not autocorrelated. It is often found to be unrealistic. and we examine the properties of
estimates both with and without this assumption,

(A4). X is non-stochastic ie. has no random part. This implies EfuX,] = X.E[u] = 0 for all 1, s.
Note that endogenous variables (whether current or lagged) are stochastic, because they are partly
determined by the random disturbances in the model. Thus, assumption (A4) rules out lagged
endogenous variables as regressors. Since we are often interested in including lagged endogenous
variables in reduced form regressions, we must examine their impact on OL.S estimates.

(A5). The regressor exhibits variation ie. the values of X, , t =1, ..., n, are not all the same.
Our model is designed to ‘explain’ the changes in Y that result from changes in X, but if no
changes in X are observed, this effect cannot be evaluated.

We now examine the statistical properties of the OLS estimates in various circumstances. focusing

on the regression cocfficient ]3 . Recall that this can be computed as
X =X -Y)

(X, -X)

Using the fact that Zj:l(xl - _)_()(Y‘ - ?) - Z; (X, - _)E)Yl , we can rewrite this as
. Y (X -XY,
R

We study the statistical properties of B by substituting Y. = & + BX; + u, into the above formula to
get
) >0 (X, = X) o +BX, +u,)

X X=Xy
Separating out the terms in the numerator, we have
. (X -+ D (X -XPX, + D (X - X,
Yo X =X
We can simplify this expression by noting that Z:;!(Xz —)_()cc = OLZ:'J(Xl - —)E) =0. We
also have zrﬁl(Xz - ;()BX, = BZ;(Xl - )_()X., = [SZL(X‘ —X)? . Thus, we can write

B
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[3 ) ZL(Xl - X)a +BX, +u,)
> (X =Xy
B X 5L (X - X,
> X =X
ZT.,(Xz -X)u,
=Rt =
2 X =Xy

To reduce the amount of notation, we define a new variable:
(Xt (= X)

> X =X)
Using W, as defined above, we can re-express f3 as

B=p+>. Wu,

Notice the following very important fact about W,: it is a function of all the observed values of

W, = t=1,....n

the explanatory variable X, because its denominator (ie. ZL] (X, — i) ) is a sum involving

Xis Xz ooy X To fix this idea in our minds, we can write W, = f{X;, X;, . . ., X}). As we shall
see shortly, this has important implications for OLS estimation when the regressor is a lagged
endogenous variable. For future reference, we also note the following properties of Wy

Z‘_lwx =0

Z" w2 = Z:;i(x’ _')_(')3 = L
1=1 {Z?_](X1 _i)l}z Z;(X; _i):

We will now use the equation 3 = + Zl ,W.u, to examine the following statistical propertics

and

of B : (a). Unbiasedness: (b). The variance of B (c). The consistency of 3.

14.4.1. Unbiasedness
We first consider whether the expected value of 3 is equal to [ ie. whether E[B | = B. In this case.

B is an unbiased estimator of B. Using the rules for manipulating expected values (see Lecture 10
Part 1), we have

E[B]=B+E[Y, Wu,]=p+> EWu,])
Therefore E[ | = B (ie. B is unbiased) if and only if E[Wu,] =0 for all t.
Now. E[W.u.] will be zero for all t if X is exogenous, because if X is exogenous, then W must be

exogenous too, and by the definition of exogeneity given in the introduction we must have
E[W.u,] = 0 for all values of tand s
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So if X is exogenous, then [} is an unbiased estimator of . A special casc of this is when X is

non-stochastic (assumption (A4) above), because if X is non-stochastic. then W must be non-
stochastic too, and we can write

E[Wu,] = W.E[u,] =0 forallt
Also notice that it makes no difference whether or not u, is autocorrelated when X is exogenous,
because X is independent of all disturbances in the model, both current and past disturbances.

In contrast, if X is a lagged endogenous variable. say X. = Y.... then X, may be uncorrelated with
current and future disturbances (see the definition of predetermined variables in the introduction),
but it will not be uncorrelated with u,,. Remember that, irrespective of the time period t. We is a

function of all the X's (ie. W, = (X;, Xz . . ., Xu)) because of the term in its denominator.
Therefore if X is a lagged endogenous variable, it must be the case that
E[Wau| =0

for some t. For example, if X; = Y., then E[Xu..;] # 0, and since W.; is a function of X;, we must
have
E[W(.lu;.;] S 0

So if X is a_lagged endogenous variable, then B is a biased estimator of B, because E[ | # .

Notice that, when X is a lagged endogenous variable, B will also be biased when the disturbances
are autocorrelated.

We can summarise the results of this sub-section in the following table. which you should learn:

Is B an unbiased estimator of B7?

u, not autocorrelated u, autocorrelated

X, exogenous Yes Yes

X, lagged endogenous No No

14.4.2. The variance of B

An unbiased estimator which has a large variance around the true parameter value will be less
useful than one which has small variance (ie. one that is more efficient), because with a given
sample of data, the one with the smaller variance will be more likely to be near the true parameter

value (see the solution to Question 2 (c) in Test 3). The vanance of B is defined as

V(B]=E(B - E[B 1] = EI(B - B

(see the definition of the variance of a random variable in Lecture 10 Part 1). From the equation
B=p+ Wu

we get that
B i ﬁ = Z.‘:]“,:ux

SO We can write

VIB] =E((B -BY1=ELY W.u, )]
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When we expand the squared term (ZT_] W,u, )’ above, we end up with squared terms of the form
(W), and cross-product terms of the form (Wa)(W.u.) = (W;W,uu,) for t # s. In total we have

V[B]—E[Z (W)’ + D D (WWu,u,)]

t+S
=>" E[(Wu,)’] + ZZE[WWu u,]

Provided that X (and therefore W) is non-stochastic. we can take W out of the expectation terms,
and rewrite the above as

VIB1= 37 W2E[u’] + ¥ 3 W,W,Eu,u,]
t¥s

If, in addition, assumption (A3) holds (ie. the errors are not autocorrelated), then E[u,u,] 0
for t #s, and if assumption (A2) holds (ie. the errors are homoskedastic), then Efu’] = 0.’ for
all t. We then have

V1= 3" Wicl +0=3" Wlo]
1

Finally, remembering that Zl lW,: = ——————, We can write
Z!:‘;(x1 - x)-
4 n 5 s G:
VIBl=X Wietm——"—=
=] Z (Xl % X)_
t=|

It can be shown that this variance is the smallest that can be attained by any unbiased
estimator under these assumptions. For this reason, the OLS estimator is often called the best
linear unbiased estimator (BLUE).

Now. if either of the assumptions (A2) or (A3) fails to hold, the above derivation breaks down.

Also, if X is a lagged endogenous variable, then B is not unbiased (as we saw in the last sub-

section), so B cannot be the BLUE. We can therefore summarise the results of this sub-section in
the following table, which vou should learn:

-

Does V[B 1= ———c——— and is the OLS estimator B the BLUE ?
Zl l(X X)

u, not autocorrelated | u. autocorrelated

X, exogenous Yes No

X, lagged endogenous No No
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14.4.3. The consistency of

What can we do if we cannot obtain an unbiased estimator? We now look at an ‘asymptotic’
property ie. a property that holds in the limiting case as the sample size n tends to infinity. If we
cannot obtain finite sample results, then the limiting case is the best we can do. This is the
situation, for example, when X is a lagged endogenous variable. The asymptotic property we

consider here is that of consistency (see the solution to Question 2(c) in Test 3). B is a consistent

estimator of P if, as n —» o, the sampling distribution of 3 concentrates around the true value
B. and tends towards a vertical line at 3 (called a ‘degenerate’ distribution). In that case, we say

that the probability limit of B is B. and write
plimB =B

A sufficient condition for consistency is that the bias and variance both tend to zero. that is
imE(B]=p and limV[B]=0

S

b

8 >é g 4
Unbiased aad consistett Biasedl bukt consistent

This is illustrated in the diagrams above, where the sampling distributions of [ for different
sample sizes are shown, These distributions become more and more concentrated around the true

value P as the sample size increases. indicating that 3 is a consistent estimator.

In the simplest case (X exogenous and non-autocorrelated u’s). B must be consistent, since E| B
= 3 for all n, and

-

ViBl==/———""——=-20 asn—>®
D K = X)
1=1
The variance goes to zero because the denominator in the above expression increases without limit
as the number of terms. n, goes to infinity (note that all those terms are squares. and therefore
positive). It can be shown that B is also consistent when X is exogenous and the disturbances arc
autocorrelated.
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It can be shown that if X, is a lagged endogenous variable, then 3 is consistent provided that
the disturbance terms are not autocorrelated. However, if X, is a lagged endogenous variable
and the disturbance terms are autocorrelated, then [3 is inconsistent.

The results on the consistency of B are summarised in the following table, which you should learn:

Is B a consistent estimator of B ie. does plimp = ?

u, not autocorrelated u, autocorrelated

X exogenous Yes Yes

X, lagged endogenous Yes No

14.5. Testing the significance of the coefficients
One of our prime objectives is to test whether X has a significant effect on Y. X has no effecton Y

if the true value of the parameter B is zero. What we must do is test the null hypothesis that B=
0. We write this null hypothesis as

H:): B =0
The test developed in this section is based on the sampling distribution of the estimated
coefficient 3. In order to make statements about this probability distribution, we need an

assumption about the probability distribution of the disturbances in the model. We assume that
the disturbances are homoskedastic and normally distributed, and write this as
u;,~N@0.c.) t=1...n

Using our equation B =B+ Z:';lWlul , we get that
4 n
B = B = lel“rtu:
The right hand side of this last expression is a linear combination of normally distributed

disturbances. and this means that the term B - B on the left hand side must itself be normally

distributed. If X is exogenous and the disturbances are not autocorrelated (so that 3 1s unbiased

-

A cq’a
and V[P ] = ——————". as we saw in the previous section), then we have
Zl—l(x‘ X X).
¢ ;s \
B -p~N|0, T“%
2 X=Xy’

On dividing by the standard deviation of B (ie. the square root of V[B ]). we obtamn a quantity that
has the standard normal distribution, which is widely tabulated:
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B_? ~N(0, 1)

. —
2 X =X)’
If we knew o,°, we could therefore test Hy: B = 0 using the standard normal distribution. Recall

from Lecture 10 Part 2 (page 7) that 95% of the probability mass for a standard normal random
variable is contained between the limits -1.96 and 1.96:

)

5=
i
-1
1
u
=
1
”a

=

If we knew o,”, then imposing the null hypothesis Hy: B = 0 would vield the following test statistic:

B

; - ~N(, 1)
o,

‘jz:‘| (X, - )_():
If the value of this statistic turned out to be greater than 1.96 or less than -1.96, we could say
that the probability that it came from a standard normal distribution is less that 0.05, and we
could then reject the null hypothesis that 3 = 0 ‘at the 5% level of significance’. Obviously,

choosing “cutoff” points other than +1.96 would allow us to test the null hvpothesis at different
significance levels.

Unfortunately, of course, we do not usually know the true value of o.°, and must in practice
replace it in the above formula by an unbiased estimate. [t can be shown that an unbiased estimate
of o, is provided by the formula

A2 o SSR
: n-2
where SSR = z:‘:l e’ is the sum of squared residuals. Thus, an unbiased estimator of V[ ] =
ol :
B o g B
2 (X = XY

G _ SSR
> (X, -X)? (n-2)3" (X, -X)*
The square root of this quantity provides an estimate of the standard deviation of the sampling

distribution of [ known as the standard error of B (denoted by SE( B )
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SE(B) = o,
@-2)F" (X, - X)?

Using the fact that Zf_l(x,. X ZLX:‘ —n)_(:_. we can write this formula m more

convenient form for computations:

SE(B) =

SSR
(= 2){2; X2 - n)—(:}

Under the above assumptions, it can be shown that the variable
B-p
SE(B)

has a t-distribution with n-2 degrees of freedom. This is written as

This quantity can be used for testing hypotheses about 8 just as before. The only difference is that
we now use the t-distribution instead of the standard normal. Imposing the null hypothesis Hy: =
0 is truc, we get the following test statistic:

5

— et
SE(B)

This quantity is known as the ‘t-ratio’ of B. To test the null hypothesis H: B = 0, we calculate
the t-ratio and compare it with ‘cutoff’ points from the t-distribution with n-2 degrees of
Sreedom. As a ‘rule of thumb’, we choose the cutoff points #2, providing a test at the *5% level
of significance’ (see below). If the calculated t-ratio is smaller than 2 in absolute value, we do
not reject the null hypothesis. If the calculated t-ratio is larger than 2 in absolute value, we

reject the null hypothesis. When we reject the null hypothesis, we say that [ is ‘significantly
different from zero’ (and that X has a significant effect on Y).

All t-distributions (you get different ones for different ‘degrees of freedom’) are *bell-shaped’, and
look more or less like the standard normal distribution. The difference is that the ‘tails’ of a
particular t-distribution are thicker. However. as the sample size n tends to infinity, all t-
distributions become more and more like the standard normal distribution. Since t-distributions
approach the standard normal as n — oc, the ‘cutoff” points for testing ‘at the 5% significance
level” also approach those of the standard normal distribution ie. £1.96. If n > 27 in the t-tests of

B above, then it turns out that the required *cutoff” points for the t-distribution are less than 2.06
in absolute value ie. at least 95% of the probability mass for a t-distribution is contained between
the limits -2.06 and 2.06 when n > 27 in the above tests, This explains the simple ‘rule of thumb’
often used to test Hy: B = 0: a coefficient is said to be significant if its absolute value is more
than twice its standard error ie. if the absolute value of its t-ratio is greater than 2. In reporting
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empirical work, the usual practice is to present either the standard error, or the t-ratio in
parentheses beneath the estimated coefficient. It is important to indicate which is being presented.

We can also use the above procedure to test the hypothesis that B is equal to some other specified
value. For example, we might want to test the null hypothesis Ho: = 1. In this case, we would
substitute B = 1 in the above formula to give as our test statistic

B-1

SE(p)
Provided that n is not too small, we could again apply the rule of thumb that if this test statistic
does not exceed 2 in absolute value, then we cannot reject the null hypothesis Hy: B = 1 at the 5%
significance level.

Now we consider the conditions under which the above testing procedure is valid. In devising the
test, we have made use of assumptions (A2), (A3) and (A4). So what happens to the test if we have
either autocorrelated errors, or X is a lagged dependent variable. or both? In the presence of

autocorrelation, the expression derived for SE( B) is no longer correct, and so the test statistic

no longer has a t-distribution. Thus, the testing procedure breaks down. This is true irrespective
of whether X is exogenous or lagged endogenous. If X is a lagged endogenous variable, and the
disturbances are not autocorrelated, then it can be shown that the test procedure is only valid
asymptotically ie. as the sample size tends to infinity. With small samples the test can be
misleading. The following table summarises the main results. You should learn it:

Is the test procedure outlined above valid ?

u, not autocorrelated u, autocorrelated

X, exogenous Yes No
X: lagged endogenous Only asympiotically No
14.6. Goodness of fit

The next question that we briefly examine in this section is how much of the variation in Y is
‘explained” by the fitted line o+ B X . We are going to derive a measure of the explanatory
power of the equation. In Sections 14.2 and 14.3 (proposition (d)), we saw that an observed value
of the dependent variable Y, can be “decomposed” into two uncorrelated parts: a “fitted” value Y.

=f{X)= o + B X. and a ‘residual’ .. Thus, we can write

Y=Y +e t=1...n

Since the residuals have a zero mean e = 0 (see proposition (b) in Section 14.3), the means of the
observed and fitted values are equal, so the equation

(Y- Y)=(Y:-Y)+e t=1,...n
expresses both the dependent variable and its fitted value in terms of their “deviations from their
means’. Squaring both sides of this equation gives

O - YP=(Y -YP+2AY: -Y)e +ed t=1,...,n
Summing both sides over t gives
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Note that the cross-products 2(Y: - Y )e; sum to zero since, as shown in proposition (d) in Section
14.3. the covariance between residuals and fitted values is zero. This last equation decomposes the
sum of squared ‘deviations from the mean’ of the dependent variable into the sum of squared
deviations from the mean of the fitted values, and the sum of squared deviations from the mean of
the residuals (remember, the mean of the residuals is zero). The equation expressed in words is
total variation in Y = explained variation + unexplained variation

If we divided by (n-1) across the equation, we would get the corresponding partition of the variance
of the dependent variable.

A natural measure of the ‘goodness of fit" or “explanatory power of a rcgresswn equation is rhe
proportion of the total variation in Y that is explained by the regression. This is denoted by R
and is called the coefficient of determination:
noo2
R explained variation _ unexplained variation i

1= w1 —
total variation total variation Z“ (Y, - Y)

It can casily be shown that 0 < R* < 1. wi nth R® = 1 only if all the data points lic on the regression
line (ie. only if all residuals are zero), and R* = 0 if X and Y are uncorrelated.

An important point that you should be aware of is that the measure R should not be used if
the model does not include a constant term (ie. ). In this case, the meaning of R’ is not clear,

and it is possible for its calculated value to be negative, or to exceed 1. The reason for this is that if
there Were no constant term included in the regressmn equation, it would no longer necessarily be

true that e = 0 (recall from Section 14.3 that € = 0 is a direct implication of the first-order

- ZlIZ(Y., —&—BXI)(—I) = 0, which no longer applies if there is no

.. @SSR
condition :
ao
constant term in the model). But if € = 0 is not true. then it is no longer true that the means of the

observed and fitted values of the dependent variable are both equal to Y . and the above partition
of the sum of squares of mean deviations does not hold.

(End of Lecture 14)
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Assignment for Lecture 14. The bivariate regression model

Please make sure that you can do the following problems before next week. You will be asked
to solve very similar ones in your exams. Full solutions are attached, but you should not look
at these until you have tried your best.

uestion 1
16 pairs of observations on Y and X were used to estimate the coefficients in the following equation by
the method of Ordinary Least Squares:
Yi=a+ BX, +u,
The sum of squared residuals is e/ = 126. In addition:
IXY, =492 ZY,=64 EX,=96 IX =657

Showing your workings in full, deduce the estimated values of a and . Assuming that u,~N(0, a.’),
test the null hypothesis that 8= 1.0.

Question 2

Consider the following equation:

Y=a+ X, +u,
Suppose that the parameters a and f} are to be estimated by the method of Ordinary Least Squares
(OLS). Briefly discuss the implications for the unbiasedness, the variance, and the consistency of the
OLS estimator of fif
(a). X, =Y., and u, is not autocorrelated;
(b). X, is exogenous, but u, follows a first-order autoregressive process of the form u, = pit; + &
(©). X, =Y., and u, follows a first-order autoregressive process of the formu, =pu,; + &.

uestion 3
Briefly discuss the implications for the validity of your test of the null hypothesis that = 1.0 in
Question 1 if
(a). X, =¥,; and u, is not autocorrelated;
(b). X, is exogenous, but u, follows a first-order autoregressive process of the form u, = pu,; + &;
(¢). X, = Y1, and u, follows a first-order autoregressive process of the form u, = pu.; + &.
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Revision sheet for Lecture 14. The bivariate regression model

For the purposes of examinations, you should learn the following results pertaining to OLS estimation of
the model Y, = «« + BX, + u,. It is your responsibility to make sure that you understand where they come
from by carefully working through the handout for Lecture 14. If you get stuck, it is your responsibility to
do something about it (¢g. come and see me).

A EE Y X, -nYX A = A
@. B = = a=Y-pX.
T, X{ - nX
N
- 2 SSR
o). 2 f ~ta2 SE(B)= [ e SSR = TN e}
SE(B) ﬂ(n—n{z;‘ﬂx( - nX }

N

For example, to test the null hypothesis Hy: = 1, calculate the ratio P — . and compare the value with

SE(B)
the appropriate cutoff points from a t-distribution with n-2 degrees of freedom (approximately =2 for a test

at the 3% level, as long as n is not too small).
A

N i
{(¢). The ‘t-ratio” of f is defined as I—A ~ 1,.2. To test the null hypothesis Hy: i = 0, we calculate the t-

SE(B)
ratio and compare it with appropriate cutoff points from the t-distribution with n-2 degrees of freedom. As
a ‘rule of thumb’. if n is not too small, we choose the cutoff points 2, providing a test at the *5% level of
significance’. If the calculated t-ratio is smaller than 2 in absolute value, we do not reject the null
hypothesis. If the calculated t-ratio is larger than 2 in absolute value, we reject the null hypothesis. When
A
we reject the null hypothesis, we say that B is ‘significantly different from zero’ (and that X has a
significant effect on Y).

Fal
(d). Is B an unbiased estimator of B ?

u, not autocorrelated u, autocorrelated
X, exogenous Yes Yes
X, lagggd endogenous No No

A 6: A
(). Does V[P | = ——————— and is the OLS estimator B the BLUE ?
T X, - X)”
t

u, not autocorrelated u, autocorrelated
X; exogenous Yes No
X, lagged endogenous No No

A A

(f). Is B a consistent estimator of P ie. does plimp = 7

u, not autocorrelated u, autocorrelated
X, exogenous Yes Yes
X, Iagged endogﬂous Yes No
(g). Is the test procedure outlined above valid ?

u, not autocorrelated u, autocorrelated
X, exogenous Yes No
X, lagged endogenous Only asymplotically No




