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Lecture 16. Autocorrelation

16.1. Introduction

In Lectures 14 and 15, we considered the estimation of reduced form equations by OLS. You will
recall that one of the Classical Assumptions of OLS is that the disturbances are not autocorrelated
ie. E[ua.] = 0 for all ts (see page 6 of the handout for Lecture 14). In this lecture, we consider in
greater detail what happens, and what we can do, when the disturbances are autocorrelated ie.
E[uw.] # 0 for some t=s. The material is organised as follows:

Section 16.2. The causes of autocorrelated disturbances

Section 16.3. The consequences of autocorrelation for the OLS estimator

Section 16.4. Some famous models of the processes which generate autocorrelation

Section 16.5. Testing for autocorrelated disturbances

Section 16.6. The Cochrane-Orcutt iterative method of estimation in the presence of
autocorrelation

Section 16.7. An interpretation of autocorrelation as ‘dynamic misspecification’

You should note that another frequently used term for ‘autocorrelation’ is “serial correlation”. We
will use these terms interchangeably in what follows. When a variable is not autocorrelated. we can
say that it is ‘serially independent”.

16.2. The causes of autocorrelated disturbances

It is logical to begin by briefly considering how autocorrelated disturbances can come about, There
are three main ways vou need to be aware of:

(a). Firstly, recall that one of the reasons for including an error term in an equation is to represent
the influence of omitted variables (those that we do not know about, cannot measure, or just do not
have data on). If any of these omitted variables exhibit autocorrelation, so will u,.

(b). Autocorrelation in the errors may also be due to the fact that the effect of a random shock to
the system is not instantaneous (ic. specific to one particular point in time), but rather persists for
several periods after its occurrence.

(¢). A third way in which autocorrelated errors may arise is as a result of transformations applied
to an equation in deriving the form that is estimated. An illustration of this is the “trick” applied to
stochastic adaptive expectations models in order to derive the final equation (see Lecture 13, Part
2. page 6).

16.3. The consequences of autocorrelation for the OLS estimator
The consequences of autocorrelation in the errors depend on the nature of the explanatory variables

in the equation. You will recall from Lecture 14 that, in the case where lagged endogenous
variables are present on the right hand side of the equation, OLS estimates are both biased and
inconsistent. The situation is very different when all the explanatory variables are exogenous. OLS
estimates remain unbiased and consistent in this case. However, several other problems arise:

(a). They are no longer the ‘best’ estimators, in the sense of having minimum variance. There
is now some other estimator, to be discussed below, which has a smaller sampling variance ie. is
more ‘efficient’.

(b). The way in which the variances and covariances of OLS estimates are calculated assuming
serial independence is wrong if the errors are autocorrelated. The OLS calculations are based

A
on taking 6. (X'X)" as the variance-covariance matrix of B, whereas the true variance-covariance
matrix in this case is given by
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E[(B-B)(B-B)]= (X'X)'XE[uu]X(X'X)" = (X'X)'XVX(X'X)
where V is the variance-covariance matrix of the errors (sce Lecture 15, page 6). If the u, are
positively autocorrelated, then the OLS formula is likely to underestimate the true variances.
Hence. t-ratios may be larger than they should be, and we may be overoptimistic about the
significance of coefficients.
(c). The OLS formula for the F-test we considered in Lecture 15 is also incorrect.
(d). The OLS sum of squared residuals (SSR) underestimates the ‘true’ sum of squared

residuals in the presence of positive autocorrelation, so we get an overoptimistic value for R
n 7

2 . a2 =1 e;

(Recall from Lecture 14 that R” is computed as R™ = 1 =

= —17———177)
I R O

16.4. Some famous models of the processes which generate autocorrelation
To simplify the analysis of autocorrelation, it is necessary to assume some formal representation of

the process generating the autocorrelation. In practice, these representations are usually
autoregressive processes, moving-average processes, or a combination of the two known as
mixed autoregressive moving-average processes.

We consider autoregressive processes for u first. The simplest of these has already been considered
in Lecture 13 Part 2 (page 2):itisa first-order autoregressive process
W = pupg + &
where -1 < p < | and the & satisfy the C lassical Assumptions including that of serial independence.
This is denoted by AR(1). A second-order autoregressive process. AR(2), is given by
W = Py + oz + &

and a general autoregressive process, AR(p). by

u =iy + oy -+ ot + &
Next, a general moving-average process, MA(q), is given by

u=g; - 015..; -0 - - qul.q
and the combination of the two, called a mixed autoregressive Moving-average process and denoted
by ARMA(p, q). can be written

U = rues - [P RO Pty = 8: - 081 - 082 -0 v - eqst-q

Having seen the various representations used, the obvious question is what do they each imply
about what we are actually interested in: the correlations between the u’s? Since this is an
introductory course, we will only consider the implications of AR(1) and MA(I) processes. The
basic techniques carry over to more general models. A convenient way of characterising the nature
of the correlations is to look at the correlograms implied by the processes. Correlograms were
introduced in Supplementary Lecture 4 Part 1, and we now briefly review this material before
proceeding. You might find it helpful to re-read the relevant section of Supplementary Lecture 4
Part 1 at this point.

Standard econometric theory will only be applicable if the disturbances are covariance-stationary.
This involves firstly the variances being time-invariant:

E[u’] = E[us] = 0.
ie. the errors being homoskedastic, and secondly the covariances being time invariant.

Efuu] = Efuu.s]
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ic. the covariance between two u’s depending only on their relative positions in time. and not on
their absolute positions. Combining the two, we can define autocorrelations of the form
E[u,u, ;]

VEL B, T}
which if the process is covariance-stationary will be given by
i Efu,u :—k]
Efu;]
and called the aurocorrelation with lag k. The r as a function of k are called the autocorrelation
function for u, and the graph of the autocorrelation function is called the correlogram. Throughout
the discussion below. we will assume that the processes are covariance-stationary.

Consider first the AR(1) process. Repeated substitution gives
u; = P + 8
= plpw2 + &) T &

=g +peatpEatPEat

- T (r<p<n
This is called the moving average representation of u. Note that it is an infinite sum. From this we
deduce that u,; depends on &1, .. . - . Hence, & is independent of v, and indeed all past u’s.
Thus
Eluu,.] = E[(pue: + e ] = E[(Pllx;l2 + El)]
= pE[un] + E[e.]
= pE[u..’]
and therefore
E[u,u,_
n= [ t :z l] — p
E[u]]
In general,
Efuaiy] = E[(pues + €Juee] = E[(pusitu + 8]
= PE[U:-lux-}:]
Therefore
e E[ulul--k] = E[ux lut—k] =

Iy= ~
= THed] ¢ B

But 1.1 = pria, €tc.., so we end up with the result
I'k=p‘ k=0,l,2,...
The following diagram shows the correlogram for an AR(1) process (-1 <p<1)

e P

|
= -0+%

AAAﬂ
Vv

p< 0




EC2203 QUANTITATIVE METHODS IN ECONOMICS II (1997-1998) @

Next, we consider a first-order moving-average process, For an MA(1) we have
E[uu..] = E[(€, - 8,811)(8:) - 0:€:2)]
= E[eg - elax-l: -0isgat elzsr.ls:-:]
= -910’,;2
since the g, are serially independent, and
E[u’] = E[(e: - 816.1)°] = E[&” - 20,8601 + 0,717
b 652 ) elloel
=( l+912)0e:
assuming covariance-stationarity. Thus
oL LILIN)
- Efuf]
The other values of the autocorrelation function (ie. r3, r3, . . ) are all zero. For example.
E[uu.] = E[(&. - 0:&.1)(82 - 618:3)] X
= E[e€:.2 - 018803 - 0811812 + 0,7°6.18,3])
= E[&.2] - 0:E[g:3] - 8,E[88:2] + 6,°E[e:1803]
and cach of these terms is zero, since the g, are serially independent. So the correlogram for an

MA(1) process looks as follows:
¢k §

=-0,/(1+6,)

Q"‘

>k
0, = -0.2

Theoretical correlograms generated by various error processes are useful for comparison when
examining estimated residual correlograms for evidence of certain forms of autocorrelation.

16.5. Testing for autocorrelated disturbances
Having seen earlier the consequences of autocorrelation for OLS estimation, it is clearly desirable

to be able to test for its presence, A basic difficulty is that assumptions about the form of any
autocorrelation are stated in terms of the disturbances, which are obviously unobservable. We
therefore have to work with our estimates of the errors: the regression residuals, the ¢’s. The
most commonly used test employs what is known as the Durbin-Watson statistic. This is defined
as the ratio of the sum of squares of the first differences of the residuals to the sum of squares of
the residuals themselves:
n 2
i Zl=:(el = et—'.).
n

P

The Durbin-Watson test is designed for use with regression equations in which all the
explanatory variables are exogenous. To understand why we use this statistic. suppose that the
u’s are generated by a first-order autoregressive process
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U; = Py + &
The OLS estimator of p that we obtain if we use the residuals ¢ in place of the unobservable error
terms u is given by
0
X ._=3etex-1
P

=2

€
Clearly dand p are related. To see how, expand the numerator of d to give
h: a2 n 2 n
d= Zx-—’:e‘ 12 Zx-_-: Ca= zz.gzze:el_,
R 2
Zh] el-l

The first two terms in the numerator differ from the denominator only in that they contain n-1
squared residuals. whereas the denominator is the sum of squares of all n residuals. If n is
reasonably large, we can neglect this difference, and write

Zl: e:e:--'.
2ot

(the symbol = means ‘approximately equals’). The ratio term in this expression differs from the

d=21-

expression for p given above only in the number of squared residuals summed in the denominator.
Thus. we have the famous result

d;2(l-;;)

If we have zero autocorrelation (p = 0) we would expect d = 2.
If we have positive autocorrelation (0 < p < 1) we would expect 0 <d < 2.
If we have negative autocorrelation (-1 < p < 0) we would expect 2 <d < 4.

So once we have calculated a value of d, we have to decide whether it is sufficiently far away from
2 to force us to reject the null hypothesis that the errors are serially independent. It is possible to
compute significance points with which d can be compared, but a great disadvantage of the
Durbin-Watson statistic is that it does not have a single critical point which is valid for all
regression problems. This is because the distribution of d depends on the particular explanatory
variables being used in the regression, so general statistical tables which apply to all
regressions cannot be drawn up. In addition. the d statistic is biased towards 2 in the presence of
a lagged dependent variable, and hence may indicate serial independence when autocorrelation is in
fact present. Most researchers use the Durbin-Watson statistic as a ‘quick-and-dirty” test for serial
correlation, before employing more generally applicable and convenient statistics to investigate
further.

One such alternative, which can be employed even when there are lagged endogenous variables in
the equation, is the so-called Box-Pierce portmanteau siatistic which you can read about for
vourself if you want to. It is not often used, so we will not consider it here. A much more
commonly used alternative test, which is asymptotically equivalent to the Box-Pierce portmanteau.
is the following. Consider the equation

Yo=Y+t oY+ Xt oo+ PXetuw t=l...n
which has lagged endogenous variables as well as exogenous variables on the right hand side.
Suppose that the errors are generated by a pth-order autoregressive process
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W= Grtg + Goa ot ol &

Then we wish to test the null hypothesis that ¢; = ¢> = - - - = ¢, = 0. This can be done by
regressing the OLS residual e, on its first p lags (e, . . ., € and the original explanatory
variables Y., . . «s¥ers Xio « + +» Xie If the null hypothesis of serially independent errors is correct,
then nR? (ie. the product of the size of the sample used in the original regression and the R’
calculated from this regression using the residuals) has asymptotically a y° distribution with p
degrees of freedom. Hence, we will reject the null hypothesis of serial independence if nR’ is
greater than the selected critical point of the y(p) distribution. This test is known as the
Lagrange Multiplier test for pth-order autocorrelation.

16.6. The Cochrane-Orcutt iterative method of estimation in the presence of autocorrelation
We now consider what to do if our testing indicates the presence of autocorrelation. Various

techniques have been developed, but we will only look at the most famous one. This is called the
Cochrane-Oreutt iterative method for the estimation of a simple bivariate regression equation
Yi=a+BX +u
where the u, are generated by a first-order autoregressive process
U = pug + &
The technique can easily be extended to deal with equations containing more than one explanatory
variable. It is based on transforming the equation into one with serially independent errors. This is
achieved by first lagging the equation and multiplying through by p to give
pY.i =ap +BpXes + pu

and then subtracting this from the original to give

Y. -pYu =a(l - p) + P(X: - pXii) + &
(note that the disturbance term is u; - pu.y = &). If pwere known, since the transformed equation
satisfies the Classical Assumptions, we could simply regress (Y. = pYe)) on (X: - pX.) using
OLS, and this would give us ‘best’ (ie. minimum variance) linear unbiased estimates.
However, pis not usually known, and must therefore be estimated.

The Cochrane-Oreutt iterative method involves using the OLS residuals to provide an estimate of

p. The estimate p is then used to generate ‘transformed’ variables of the form (Y, - pY.) and (X:

- pX..). and the equation is re-estimated using these transformed variables. The residuals from

this re-cstimation can then be used to get an improved estimate of p. and so on. The full procedure
1s as follows:

(1). Estimate the equation Y, = o + BX; + u. by OLS. and and use the estimates of o and P to
caleulate the residuals ), ¢, . . .. . Use these residuals to estimate, by OLS. the first-order
autoregressive process u, = pu,.; + & with the unobservable u,’s replaced by their estimates, the ¢;’s.
This gives

n
= 1=2 el el-'.
m—
Zx;;‘ el']
(2). Construct transformed variables Y.* and X fort=1,...n, where

Y*=Y,- [;Yx-l

p

X*t=X- bxl-l
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and estimate, by OLS, the equation Y.* = a* + BX.* + u*, where o* = a(1 - p). We can obtain an
estimate of a from the resulting estimate of a* using the formula
o

(1-p)

Using the revised estimates of « and B, calculate the new residuals e;*, ex*. . . ., ¢,* by substitution
into the original equation;

a=

ex* = Y( s (1 - ﬁ Xt
Use these in turn to obtain a new estimate of p:

A

n - v
2 €€
p=

1=2
it
t-l‘e“l

(3). Construct new transformed variables (Y, - pY.:) and (X, - pX.;) and repeat step (2).
Continue the iterations until the estimate of p converges (ie. until the estimate of p changes by less
than some specified small number in successive iterations). When the estimate of p has converged,
it can be used to estimate the equation Y, - pY,; = a(l - p) + B(X; - pX.1) + & by OLS. Since &,
satisfies the Classical Assumptions, the resulting estimates of o and B will be BLUE.

Variants of this method which you might like to read about for vourself are the Cochrane-Orcutt
Two-Step Method. Durbin’s Two-Step Method. The Prais-Winsten Modification, The Hildreth-Lu
Search Method, and direct estimation of the transformed equation by non-linear least squares or
maximum likelihood.

16.7. An interpretation of autocorrelation as ‘dynamic misspecification’
So far, we have viewed autocorrelation as a ‘nuisance’. since all the t-ratios will be miscalculated

if we do not take it into account by using one of the estimation methods in Section 16.6. In this
section, we consider a slightly different interpretation of autocorrelation. It will be presented in the
context of the simple bivariate model with an error generated by a first-order autoregressive
process:

Y. =a+BX +u

U = Py + &
Recall from the last section that we can transform the equation into one with a serially independent
error term, €.

Y=ol - p) + pYy + PXi - BpXe T &
This can be stated as a dynamic linear regression equation with a non-linear restriction on its
parameters:
Y=y + Yo X+ 7aXu + &

subject to

12+ =0.
To begin with, suppose that this restriction is truc. Then the bivariate model with an
autoregressive error can be regarded as a simplification of the more general dynamic model. It
reduces the number of parameters to be estimated from four to three, thus yielding more
efficient estimates. (The fewer parameters you estimate, the more ‘efficient’ your estimates will
be. because there will be more “degrees of freedom’. Recall from Lecture 15, page 3. that the
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degrees of freedom are computed as (n-k), where k is the number of parameters being estimated.
The term (n-k) appears in the denominator of formula for the standard error of an estimate. Thus,
the smaller is k. the smaller are the standard errors). Thus, an autoregressive error process can
sometimes be used to simplify the dynamic specification of an equation.

However. suppose now that the above restriction is not true. In other words, suppose that the
correct specification of the equation is

Y. =1+ Y + Xt veXa &
without any restriction on the parameters. Then if we estimate the simple bivariate model without
any lags

Y.=a+B8X,+u

we will probably obtain a significant value of the Durbin-Watson statistic, since u will “pick up’
the effect of the omitted lagged Y and X. Y is obviously autocorrelated if the true model is Y, =
11+ 1Y + 1X. + 1uXo + & (and X is probably autocorrelated too, as are most economic time
series), so u, will also be autocorrelated if we estimate the ‘incorrect’ model Y, = o + X, + u.
The equation Y, = a. + BX; + u; plus the assumption that the u’s are generated by an AR(1) process
is a better approximation to the ‘correct” specification than the equation Y, = a. + BX; + u, with the
assumption that the u’s are purely random. Thus, the Durbin-Watson statistic will be significantly
different from 2. The actual problem with this equation, however, is not that the errors follow
an AR(1) process. The problem is one of misspecification, in particular the omission of X.;
and Y., Thus, in this instance, a significant Durbin-Watson statistic is in fact indicating
‘dynamic misspecification’.

This explains why the addition of lagged dependent and lagged explanatory variables on the right

hand side of a time series model (eg. the linear partial adjustment model in the applied
econometrics exercise) often significantly improves the performance of the model.

(End of Lecture 16)
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Assignment for Lecture 16. Autocorrelation
Please attempt the following problem. You will get very similar ones in your tests and exams. The

solution is attached, but you should not look at it until you have tried your best to solve the
problem on vour own.

Consider the following dynamic model:

Yl-ﬂYH"’u: -l<f<1
Suppose the disturbance term follows a first-order autoregressive process of the form

Uy =ptpg + & -1<p<l
Show that Coviu, Y. = po’f/(l-p@. (Hint: vou need to use the formula for the sum of an infinite
geometric series. An infinite geometric series can be written in the form a + ar = af +a + +ar -

Provided that |¥. = 1, this sum is equal to a/(I-r)). Briefly describe the consequences of this Sfor the
Ordinary Least Squares estimate of f



