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Lecture 17, Heteroskedasticity Dr Christian P H Salas

17.1. Introduction

In Lectures 14 and 13, we considered the estimation of reduced form equations by OLS. In Lecture
16, we considered cases in which the disturbances are autocorrelated ie. Efuu,] # 0 for some ts.
Autocorrelation is a problem that is typically encountered when analysing time series data.

In this lecture. we consider violations of the #omoskedasticity (ie. “constant-variance’) assumption
of the classical model, which says that V[u] = E[u’] = o,” for all t (see page 6 of the handout for
Lecture 14). When disturbances pertaining to different observations have different variances, the
disturbances are said to be heteroskedastic. Heteroskedasticity is a problem that is typically
encountered when analysing cross-section data. Hence, in this lecture, we will use the subscript
4i* rather than the subscript ‘t’ to denote particular observations. The material is organised as
follows:

Section 17.2. The causes of heteroskedasticity

Section 17.3. The consequences of heteroskedasticity for the OLS estimator

Section 17.4. Representations of heteroskedasticity

Section 17.5. Testing for heteroskedasticity

Section 17.6. Estimation in the presence of heteroskedasticity using the method of
Weighted Least Squares (WLS)

Section 17.7. An interpretation of heteroskedasticity as ‘equation misspecification” or
“variation in the coefficients’.

You should note that the term ‘heteroskedasticity” is frequently written with a “c” instead of a k" as
heteroscedasticity,

17.2. The causes of heteroskedasticity

There are two main causes of heteroskedasticity which you should be aware of. Firstly,
heteroskedasticity arises when the variance of the dependent variable (which is the same as the
variance of the disturbance term) itself depends upon one or more independent variables. As a
classic illustration of this. consider the following relationship between consumption and disposable
income across a cross-section of families:

C=a+pY:+tuy i=1,...,n

Those with higher incomes may have more flexibility over the choice of consumption level than
those on lower incomes. Thus, we may find that the variance of consumption (or equivalently, the
variance of the disturbance term) increases with income. This might give ris¢ to the following

scatter plot of the data: . -
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Along the same lines. the variation in investment spending among large firms may be greater than
among small firms, so the variances of the disturbances in a model of investment expenditure may
themselves depend upon firm size, There are many other possible illustrations of a similar nature.
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Secondly, heteroskedasticity can arise as a result of misspecification of an equation. For example,
the omission of a relevant explanatory variable will cause the errors to be heteroskedastic if that
variable itself exhibits non-constant variance, In this case, the correct thing to do is to respecify the
equation, rather than to try to account for heteroskedastic errors using the estimation procedures
discussed below. As we shall see in Section 17.7, heteroskedasticity may also arise if one or more
of the coefficients in an equation are random variables (rather than constants).

17.3. The consequences of heteroskedasticity for the OLS estimator

The consequences of heteroskedasticity are essentially the same as those of autocorrelation - they
are both violations of the assumption that the variance-covariance matrix of the errors can be
written as E[uu’] = 0,1, where I is the (nxn) identity matrix (sec Lecture 15, page 5). The OLS
coefficient estimates are still both unbiased and consistent (the assumption of a constant error
variance was not used in the proof of either - see Lecture 14). However, they are inefficient ie. they
no longer have the property of minimum variance, so that it is possible to obtain more reliable
estimates (we will see how later).

Finally, the OLS estimates of the yariances of the coefficients will be biased, so the t-ratios

which make use of these expressions will also be biased. To clarifv the nature of the bias in the t-

ratios, consider a cross-section bivariate regression model involving a single explanatory variable:
Yi=a+BX;+ui i=l_....,n

Suppose that the disturbances are heteroskedastic, so that the variance of each u; depends upon i:

E[u’] = o, If the derivation of the formula for VIB] in Lecture 14 (page 9) is carefully

considered. it can be shown that the direction of the bias in the OLS estimate of the variance of [
depends on the direction of the association between (X, — X)* and 6. As an exercise for this

lecture, you are asked to show that if (X, - X)? and o are positively related, then the OLS

estimate of the variance of B underestimates the true one. Hence, the calculated t-ratio will be an
overestimate, and we may be misled into thinking that a variable is significant when in reality
it is not. 1f. on the other hand, (X, — X)* and & are negatively related, the OLS estimate of the

variance of 3 overestimates the true one. Hence, the calculated t-ratio will be an underestimate,

and we may be misled into thinking that a variable is insignificant when in reality it is
significant.

17.4. Representations of heteroskedasticity

When considering autocorrelation in Lecture 16, we had to assume that the errors were generated
by an AR(1) or some other process in order to proceed with our analysis. We need to do the same
sort of thing here. We have to assume some form for the way in which o7 varies with i in order to
consider efficient estimates. tests against particular alternatives, ctc. The most common approach
is to formulate the possible heteroskedasticity as

o = flo; + 0aZy + 0aZy + - - - + o)
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where f is some function which is assumed to be independent of i, the ¢'s are unknown parameters,
and the Z,’s are observed variables which may or may not include the explanatory variables in the
original equation. As a simple example. consider the following specification, which we will use
later to discuss estimation in the presence of heteroskedasticity by Weighted Least Squares:

O’iz =q; t+ O.:Z,
A null hypothesis of homoskedastic errors can be specified in terms of parametric restrictions on
these specifications eg. H: a2 = 0 in the context of the simple model 6° = o + a.Zi.

17.5. Testing for heteroskedasticity
There are many tests available for examinination of the possibility of heteroskedastic errors, but we

will only consider one called the Brewsch-Pagan test, which is easy to carry out, and which
encapsulates the basic ideas underlying most of the other tests. The Breusch-Pagan test formulates
the possible heteroskedasticity as

o = floy + oy + asZy + - -+ + OnZii)
This is defined in the same way as in Section 17.4, except that the Z's are assumed to be
exogenous. along with all the explanatory variables in the original equation (any of which can also
appear as Z’s). Note that the function f does not need to be specified. The null hypothesis of
homoskedasticity can be written as

Hyoo=o;=-- '=0.m=0

since. in this case, ;- = f{a;) which is constant. The test procedure is as follows:

(). Estimate the original equation by OLS and calculate the residuals ¢, €.. . . ., e
(I1). Construct the variable g defined by

ne’

zll e:
i=]1.}
(I11). Regress g on the Z variables (including an intercept term).

(IV). Construct the test-tatistic
B = 0.5(the explained sum of squares from this regression).

g= 1=1,...n

Under the null_hypothesis of homoskedastic errors, B has (asymptotically) a chi-square
distribution with (m-1) degrees of freedom. Hence, to test the null hypothesis, we simply
compare B with the appropriate critical point from the chi-square table.

Other tests. which vou might like to read about for yourself, include the famous Goldfeld-Quandt
test, and the Glesjer test.

17.6. Estimation in the presence of heteroskedasticity using the method of Weighted Least
Squares (WLS

Consider the following cross-section bivariate regression model:
Yi=a+BXi+y i=1l...n

The assumption of homoskedasticity in the context of this model can be written as V[u] = E[u’] =
& (constant for all 1). Given any pair of observations in the data set, say (X, Y,) and (X5, Y2). the
assumption of homoskedasticity says that V[u;] = V[uy], so that the two observations are equally
reliable ie. each observation is just as likely as the other to be ‘near” to the line Y = o + BX. If it
were the case that V[u;] < V[uz], say, then the (X,, Y;) would be more likely to lie ‘near’ to the line
Y = a + BX than (Xs, Y). Since (X), Y) is more reliable than (X,, Y,) in this case, we would
want to put more ‘emphasis’ on (X, Y,) in the estimation procedure.
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This intuitively appealing idea underlics the statistical method known as Weighted Least Squares
(WLS), which can be used to estimate regression models in the presence of heteroskedasticity.
Basically, WLS involves applying OLS to ‘transformed’ variables. where the transformation
procedure attaches a greater weight to the more reliable observations, and a lower weight to the
less reliable observations. Typically, the ‘weight” used is an estimate of the inverse of the standard
deviation.

To illustrate, suppose we want to estimate the parameters of the following linear equation:
Y= +B:Xsi - +BXu tu i=l,..,n

To keep things simple. we will assume that the heteroskedasticity can be characterised by the
following relationship between the variance of u; and a variable Z; (recall that the formula for the
variance of u; is E[u;’]):

E[u’] = o + aZ; i=1...n
The variable Z may or may not be one of the explanatory variables in the original equation. but it
must be exogenous. As we have already seen, the hypothesis of homoskedasticity can be written
simply as Hy: o2 = 0. Given such a form for the mean of u”, we might reasonably assume that

2=y +oZi+v i=1,...n
where v, is an error term with E[v;] = 0. If we replace the unobservable disturbances u; by the
residuals e, we can then estimate a; and a; by OLS. Hence, we can get estimates of the o
and thus re-estimate the original equation taking account of the heteroskedasticity. This
produces the WLS estimates. If the assumed form of the heteroskedasticity is correct, these
estimates are efficient. The full procedure is as follows:

(I). Estimate the original equation by OLS, and calculate the residuals.

(II). Regress ¢ on Z; to obtain OLS estimates of o, and o and from these calculate
e

6i=\l‘d1+d:Z, i (SO |

(II1). Divide through the original equation by o . and estimate the transformed equation by OLS:
(V/G1) = Br + PalXn/G:) + - - - + BulXif/ 1) + (/O i=1,...,n

In this way, observations which are associated with a higher variance (and which are therefore
less reliable) are given a lower weight, and observations which are associated with a lower
variance are given a higher weight. Note that there are different procedures for different
assumptions about the precise form of the heteroskedasticity, but the basic intuition is the same.

17.7. An interpretation of heteroskedasticity as ‘equation misspecification’ or ‘variation in the
coefficients’

It was pointed out in Section 17.2 that observed heteroskedasticity in the calculated residuals can
be the result of misspecification of the equation and/or variation in the coefficients, as well as of
heteroskedasticity in the unobservable disturbance term of the ‘true’ equation. To conclude this
lecture. we will now look at this more closely.

Consider first the possibility that the equation is misspecified to the extent that a relevant
explanatory variable has been left out. Call it W, Thus. the ‘truc’ relationship might be given by
Y. =B +BXn# -+ BiXia T YW F
whilst we are estimating the equation
Y. =B+ BoXnt -+ PX T u*
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where u.* = yW, + u,. Assuming that W, is exogenous, we have Viu*] = ¥'V[W,] + 6.°, which will
in general not be constant. (Note: I have used the rule that, for any two random variables X and Y,
VIX + Y] = V[X] + V[Y] + 2Cov[X, Y]. When W, is exogenous, Cov[W.. u;] = 0, so we have
VIW: + u] = V[yW. | + V[u] = ¥'V[W.] + 6.’ as stated above). Thus. for example, if one of the
relevant Z's in the Breusch-Pagan test is from outside the equation, one possible interpretation of a
significant test statistic is that the variable should have been i# the equation in the first place!
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Consider next the possibility that one of the coefficients in the equation is not constant. Suppose.
for example, that the ‘true’ relationship is given by

A= Bl FRXu+ -+ BrXa +
where By is composed of a fixed and a random component as follows:

ﬁkl = pk +v

It is assumed that E[v] = 0. If we ignored the random variation in the coefficient of Xy, we would
effectively be estimating the equation

Y=+ BaXn+- - - + BiXi + u*
with u* = v Xy, + u,. Assuming that Xy, is exogenous and that u and v are not correlated, we would
have V[u#] = V[viXy. + u] = Xi’0,” + 0., This will clearly not be constant in general. Hence,
when significant heteroskedasticity is discovered in a Breusch-Pagan test based on one of the
explanatory variables, one possible explanation is that there is variation in the corresponding
coefficient.

(End of Lecture 17)
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A problem for Lecture 17. Heteroskedasticity
It was asserted in the text that if the disturbances are heteroskedastic in the context of a bivariate

regression model of the form
Y=a+BX +y i=1,...n

then the direction of the bias in the OLS estimate of the variance of 8 depends on the direction of
the association between (X, X) and o, If (X, - X) and o arc positively related. then the

OLS estimate of the variance of B underestimates the true one. If, on the other hand, (X, — X)

and o, are negatively related, the OLS estimate of the variance of B overecstimates the true one.
Prove this.

(Hint: It can be shown that if the disturbances are heteroskedastic. and the standard error of B

is compuied as SE(é) = SnSR — o
(n v Z)Z:z](xl T X)-
o’ 5 X( —-)_( 39
E[SE( )] = —— _ L ZLX-X,

TLmX @-2(T X -X07)
where Ee = lZ:of and 8, = o - G . Compare this expected value with the expression you
n =

get for V[ B | when you alter the derivation on page 9 in the handout Jor Lecture 14 by assuming
that the disturbances are heteroskedastic).
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